Read More
Date: 28-6-2017
![]()
Date: 3-8-2021
![]()
Date: 2-7-2017
![]() |
A characterization of normal spaces which states that a topological space is normal iff, for any two nonempty closed disjoint subsets
, and
of
, there is a continuous map
such that
and
. A function
with this property is called a Urysohn function.
This formulation refers to the definition of normal space given by Kelley (1955, p. 112) or Willard (1970, p. 99). In the statement for an alternative definition (e.g., Cullen 1968, p. 118), the word "normal" has to be replaced by .
REFERENCES:
Cullen, H. F. Introduction to General Topology. Boston, MA: Heath, p. 124, 1968.
Joshi, K. D. "The Urysohn Characterization of Normality." §7.3 in Introduction to General Topology. New Delhi, India: Wiley, pp. 177-182, 1983.
Kelley, J. L. General Topology. New York: Van Nostrand Company, p. 115, 1955.
Willard, S. General Topology. Reading, MA: Addison-Wesley, p. 102, 1970.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|