المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Elongation Factor Tu Loads Aminoacyl-tRNA into the A Site  
  
1868   10:57 صباحاً   date: 24-5-2021
Author : JOCELYN E. KREBS, ELLIOTT S. GOLDSTEIN and STEPHEN T. KILPATRICK
Book or Source : LEWIN’S GENES XII
Page and Part :

Elongation Factor Tu Loads Aminoacyl-tRNA into the A Site


KEY CONCEPTS
- EF-Tu is a monomeric G protein whose active form (bound to GTP) binds to aminoacyl-tRNA.
- The EF-Tu–GTP–aminoacyl-tRNA complex binds to the ribosome’s A site.

Once the complete ribosome is formed at the initiation codon, the stage is set for an elongation cycle in which an aminoacyl-tRNA enters the A site of a ribosome whose P site is occupied by a peptidyl-tRNA. Any aminoacyl-tRNA except the initiator can enter the A site; the one that does enter is determined by the mRNA codon in the A site. Its entry is mediated by an elongation factor (EF-Tu in bacteria). The process is similar in eukaryotes. EF-Tu is a highly conserved protein among bacteria and mitochondria and is homologous to its eukaryotic counterpart.
Just like its counterpart in the initiation stage (IF-2), EF-Tu is associated with the ribosome only during the process of aminoacyltRNA entry. Once the aminoacyl-tRNA is in place EF-Tu leaves the ribosome to work again with another aminoacyl-tRNA. Thus, it displays the cyclic association with, and dissociation from, the ribosome that is the hallmark of the accessory factors.
Figure 1 depicts the role of EF-Tu in bringing aminoacyl-tRNA to the A site. EF-Tu is a monomeric GTP-binding protein that is active when bound to GTP and inactive when bound to guanine diphosphate (GDP). The binary complex of EF-Tu–GTP binds to aminoacyl-tRNA to form a ternary complex of aminoacyl-tRNA–EFTu–GTP. The ternary complex binds only to the A site of ribosomes whose P site is already occupied by peptidyl-tRNA. This is the critical reaction in ensuring that the aminoacyl-tRNA and peptidyltRNA are correctly positioned for peptide bond formation.


FIGURE 1. EF-Tu–GTP places aminoacyl-tRNA on the A site of ribosome and then is released as EF-Tu–GDP. EF-Ts is required to mediate the replacement of GDP by GTP. The reaction consumes GTP and releases GDP. The only aminoacyl-tRNA that cannot be recognized by EF-Tu–GTP is fMet-tRNAf , whose failure to bind prevents it from responding to internal AUG or GUG codons.
Aminoacyl-tRNA is loaded into the A site in two stages. First, the anticodon end binds to the A site of the 30S subunit. Then, codon– anticodon base pairing triggers a change in the conformation of the ribosome. This stabilizes tRNA binding and causes EF-Tu to hydrolyze its GTP. The CCA end of the tRNA now moves into the A site on the 50S subunit. The binary complex EF-Tu–GDP is released. This form of EF-Tu is inactive and does not bind aminoacyl-tRNA effectively.
The guanine nucleotide exchange factor, EF-Ts, mediates the regeneration of the inactive form EF-Tu–GDP into the active form EF-Tu–GTP. First, EF-Ts displaces the GDP from EF-Tu, forming the combined factor EF-Tu–EF-Ts. Then the EF-Ts is, in turn, displaced by GTP, reforming EF-Tu–GTP. The active binary complex binds to an aminoacyl-tRNA, and the released EF-Ts can recycle.
Each cell has about 70,000 molecules of EF-Tu (which is about 5% of the total amount of bacterial protein), which approaches the number of aminoacyl-tRNA molecules. This implies that most aminoacyl-tRNAs are likely to be in ternary complexes. Each cell has only about 10,000 molecules of EF-T, about the same as the number of ribosomes. The kinetics of the interaction between EFTu and EF-Ts suggest that the EF-Tu–EF-Ts complex exists only transiently, so that the EF-Tu is very rapidly converted to the GTPbound form, and then to a ternary complex.
The role of GTP in the ternary complex has been studied by substituting an analog that cannot be hydrolyzed. The compound GMP-PCP has a methylene bridge in place of the oxygen that links the β and γ phosphates in GTP. In the presence of GMP-PCP, a ternary complex that binds aminoacyl-tRNA to the ribosome can be formed. However, the peptide bond cannot be formed, so the presence of GTP is needed for aminoacyl-tRNA to be bound at the A site. The hydrolysis is not required until later.

Kirromycin is an antibiotic that inhibits the function of EF-Tu. When EF-Tu is bound by kirromycin, it remains able to bind aminoacyltRNA to the A site. However, the EF-Tu–GDP complex cannot be released from the ribosome. Its continued presence prevents formation of the peptide bond between the peptidyl-tRNA and the aminoacyl-tRNA. As a result, the ribosome becomes “stalled” on the mRNA, bringing translation to a halt.
This effect of kirromycin demonstrates that inhibiting one step in translation blocks the next step. The reason is that the continued presence of EF-Tu prevents the aminoacyl end of aminoacyl-tRNA from entering the A site on the 50S subunit. Thus, the release of EF-Tu–GDP is needed for the ribosome to undertake peptide bond formation. The same principle is seen at other stages of translation: One reaction must be properly completed before the next can occur.
The interaction with EF-Tu also plays a role in quality control. Aminoacyl-tRNAs are brought into the A site without regard for whether their anticodons will fit the codon. The hydrolysis of EFTu– GTP is relatively slow; it takes longer than the time required for an incorrect aminoacyl-tRNA to dissociate from the A site, so most incorrect aminoacyl-tRNAs are removed at this stage. The release of EF-Tu–GDP after hydrolysis is also slow, so any remaining incorrect aminoacyl-tRNAs may dissociate at this stage. The basic principle is that the reactions involving EF-Tu occur slowly enough to allow incorrect aminoacyl-tRNAs to dissociate before they become “trapped” in translation.
In eukaryotes, the factor eEF1a is responsible for bringing aminoacyl-tRNA to the ribosome, also in a reaction that involves cleavage of a high-energy bond in GTP. Like its prokaryotic homolog (EF-Tu), it is abundant in the cell. After hydrolysis of GTP, the active form is regenerated by the factor eEF1βγ, a counterpart to EF-Ts.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.




شعبة التوجيه الديني النسوي تختتم دورتها الثانية لتعليم مناسك الحجّ
قسم التطوير يختتم تدريب خمس مجموعات ضمن برنامج تمكين الخادم
المجمع العلمي يعلن إطلاق دوراته الصيفية في محافظة ذي قار
قسم شؤون المعارف يقيم ندوة حول القيمة العلمية والمعرفية للوثائق