Read More
Date: 22-4-2021
1399
Date: 3-5-2021
2398
Date: 5-5-2021
2216
|
The asymptotic form of the -step Bernoulli distribution with parameters and is given by
(1) |
|||
(2) |
(Papoulis 1984, p. 105).
Uspensky (1937) defines the de Moivre-Laplace theorem as the fact that the sum of those terms of the binomial series of for which the number of successes falls between and is approximately
(3) |
where
(4) |
|||
(5) |
|||
(6) |
More specifically, Uspensky (1937, p. 129) showed that
(7) |
where the error term satisfies
(8) |
for (Uspensky 1937, p. 129; Kenney and Keeping 1951, pp. 36-37). Note that Kenney and Keeping (1951, p. 37) give the slightly smaller denominator .
A corollary states that the probability that successes in trials will differ from the expected value by more than is , where
(9) |
with
(10) |
(Kenney and Keeping 1951, p. 39). Uspensky (1937, p. 130) showed that is given by
(11) |
where
(12) |
|||
(13) |
|||
(14) |
and the error term satisfies
(15) |
for (Uspensky 1937, p. 130; Kenney and Keeping 1951, pp. 40-41).
REFERENCES:
de la Vallée-Poussin, C. "Demonstration nouvelle du théorème de Bernoulli." Ann. Soc. Sci. Bruxelles 31, 219-236, 1907.
de Moivre, A. Miscellanea analytica. Lib. 5, 1730.
de Moivre, A. The Doctrine of Chances, or, a Method of Calculating the Probabilities of Events in Play, 3rd ed. New York: Chelsea, 2000. Reprint of 1756 3rd ed. Original ed. published 1716.
Kenney, J. F. and Keeping, E. S. "The DeMoivre-Laplace Theorem" and "Simple Sampling of Attributes." §2.10 and 2.11 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 36-41, 1951.
Laplace, P. Théorie analytiques de probabilités, 3ème éd., revue et augmentée par l'auteur. Paris: Courcier, 1820. Reprinted in Œuvres complètes de Laplace, tome 7. Paris: Gauthier-Villars, pp. 280-285, 1886.
Mirimanoff, D. "Le jeu de pile ou face et les formules de Laplace et de J. Eggenberger." Commentarii Mathematici Helvetici 2, 133-168, 1930.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, 1984.
Uspensky, J. V. "Approximate Evaluation of Probabilities in Bernoullian Case." Ch. 7 in Introduction to Mathematical Probability. New York: McGraw-Hill, pp. 119-138, 1937.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|