المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

فوائد ومميزات الحصول على شهادة المطابقة الإيزو (14000) وفقاً للمواصفة (14001 ISO)
2023-07-12
Bow waves
2024-06-30
الساسانيون
17-10-2016
Consonants TAPS and FLAPS
2024-03-23
الوحي الرسالي
2024-08-21
الأمراض التي ينقلها ذباب الخيل
20-1-2016

Random Variable  
  
1866   02:47 صباحاً   date: 22-3-2021
Author : Doob, J. L.
Book or Source : "The Development of Rigor in Mathematical Probability (1900-1950)." Amer. Math. Monthly 103
Page and Part : ...


Read More
Date: 9-2-2021 1163
Date: 5-4-2021 2962
Date: 29-3-2021 1520

Random Variable

A random variable is a measurable function from a probability space (S,S,P) into a measurable space  known as the state space (Doob 1996). Papoulis (1984, p. 88) gives the slightly different definition of a random variable X as a real function whose domain is the probability space S and such that:

1. The set {X<=x} is an event for any real number x.

2. The probability of the events {X=+infty} and {X=-infty} equals zero.

The abbreviation "r.v." is sometimes used to denote a random variable.


REFERENCES:

Doob, J. L. "The Development of Rigor in Mathematical Probability (1900-1950)." Amer. Math. Monthly 103, 586-595, 1996.

Evans, M.; Hastings, N.; and Peacock, B. Statistical Distributions, 3rd ed. New York: Wiley, 2000.

Gikhman, I. I. and Skorokhod, A. V. Introduction to the Theory of Random Processes. New York: Dover, 1997.

Papoulis, A. "The Concept of a Random Variable." Ch. 4 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 83-115, 1984.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.