تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fisher Information Matrix
المؤلف:
Zamir, R.
المصدر:
"A Proof of the Fisher Information Matrix Inequality Via a Data Processing Argument." IEEE Trans. Information Th. 44
الجزء والصفحة:
...
7-2-2021
1379
Fisher Information Matrix
Let be a random vector in
and let
be a probability distribution on
with continuous first and second order partial derivatives. The Fisher information matrix of
is the
matrix
whose
th entry is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
REFERENCES:
Papathanasiou, V. "Some Characteristic Properties of the Fisher Information Matrix via Cacoullos-Type Inequalities." J. Multivariate Analysis 14, 256-265, 1993.
Vignat, C. and Bercher, J.-F. "On Fisher Information Inequalities and Score Functions in Non-Invertible Linear Systems." J. Ineq. Pure Appl. Math. 4, Article 71, 1-9, 2003. https://jipam.vu.edu.au/article.php?sid=312.
Zamir, R. "A Proof of the Fisher Information Matrix Inequality Via a Data Processing Argument." IEEE Trans. Information Th. 44, 1246-1250, 1998.
Zamir, R. "A Necessary and Sufficient Condition for Equality in the Matrix Fisher Information Inequality." Technical Report, Tel Aviv University, Dept. Elec. Eng. Syst., 1997. https://www.eng.tau.ac.il/~zamir/techreport/crb.ps.gz.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
