المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
الإمام عليٌ (عليه السلام) حجّة الله يوم القيامة
2024-04-26
امساك الاوز
2024-04-26
محتويات المعبد المجازي.
2024-04-26
سني مس مربي الأمير وزمس.
2024-04-26
الموظف نفرحبو طحان آمون.
2024-04-26
الموظف نب وعي مدير بيت الإله أوزير
2024-04-26

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Biological Extracellular Matrices  
  
987   10:57 صباحاً   date: 1-1-2021
Author : John M Walker and Ralph Rapley
Book or Source : Molecular Biology and Biotechnology 5th Edition
Page and Part :


Read More
Date: 26-7-2016 1065
Date: 4-1-2017 2025
Date: 31-7-2016 1305

Biological Extracellular Matrices


The second important component in tissue engineering is the extracellular matrix (ECM). The ECM represents the secreted product of the resident cells of each tissue and organ. Therefore, the ECM of each tissue and organ has a unique structure and composition, providing structural stability for the tissue. It includes information about the position and alignment of the different cell types and ensures that the relevant growth factors are provided at the right level, time and place to coordinate organ morphogenesis and repair. Although all the cells in an organism are embedded in ECM, sufficient amounts of ECM for use in tissue engineering can only be extracted from a few tissues such as skin, the pericardium, small intestine, urinary bladder, liver and Achilles tendon.

ECM is by no means static and uniform but is rather a structure that adapts continuously to the requirements of the tissue. The composition and structure of the ECM are directly coupled to its location within the organ, the function of the tissue and the age of the individual. For example, kidney has very little ECM compared with its cellular component, whereas tissue that is primarily structural, such as tendons and ligaments, displays large amounts and a differential
composition of ECM.

ECM is composed mainly of collagen, of which more than 20 types have been identified thus far. The most common is type 1 collagen that has been highly conserved during the course of evolution. Thus, allogenic and xenogenic sources of type 1 collagen are both relevant for tissue engineering, making collagen the most widely used biologic scaffold in therapeutic interventions. The 12 subtypes of collagen are responsible for the distinctive biological activity of the ECM. In combination with laminin they form a three-dimensional mesh-like structure that is adapted to the specific function of a tissue and provides optimal strength, rigidity or plasticity. Laminin, the second most abundant protein in ECM, is a complex trimeric, cross-linked adhesion protein with separate binding domains for collagen IV, heparin, heparin sulfate and direct cell binding.80 Laminin exists in different isoforms, depending on the particular mixture of the peptide chains and plays an important role in the vascularization and maintenance of vascular structures. Since vascularization of scaffolds for tissue repair is the most rate-limiting step, laminin is considered to be an important component of cell-friendly scaffold material. A very important peptide motif found in most proteins which form the ECM (e.g. the glycoproteins fibronectin or vitronectin) is the arginine, glycine and asparaginic acid sequence (RGD). This motif binds to cellular adhesion molecules (CAM), known as integrins, thereby anchoring the cells mechanically in the ECM. The different RGD sequences adopt different conformations in the different matrix proteins, so that these sequences are recognized by different integrin subtypes expressed by specific cell types which favors a tissue-specific cellular organization. Furthermore, the generation of focal adhesions generates cell responses such as the polarization of the cells, the production of survival signals and factors for the remodulation of the ECM. Therefore, synthetic scaffolds produced for tissue engineering are often modified with special RGD–peptide sequences to render them biocompatible, to provide better integration and to control the setup of the tissue. Important non-protein components of ECM are the glycosaminoglycans (GAGs), which do not have a structural function. However, they substantially modulate the gel properties of the ECM by retaining water and binding growth factors and cytokines. Also, their ability to mediate ECM–cell interactions makes heparin-rich GAGs a valuable component for tissue engineering-compatible scaffolds. In addition to structural proteins, the ECM also contains trace amounts of a variety of bioactive proteins which functionalize the bio-scaffold. Non-limiting examples include vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, hepatocyte growth factor, keratinocyte growth factor, transforming growth factor beta and platelet-derived growth factor. Due to the presence of such growth factor cocktails, natural ECM grafts are often used to functionalize synthetic scaffolds, which are otherwise biologically inert and fail to degrade and promote infiltration of cells from neighboring tissues. In contrast, the use of unmodified, decellularized ECM promotes rapid cell infiltration, scaffold degradation, deposition of neo-matrix and tissue organization with a minimum of scar tissue. Today, over one million patients have been treated successfully with xenogeneic ECMscaffolds to heal skin lesions, promote vascular reconstruction and re-establish the urinary tract,98–100 the intestine,
 diaphragm, rotator cuff and muscle structures.
The complex three-dimensional structure and composition of ECM have yet to be fully elucidated, exemplifying how difficult it is to design ECM-containing scaffold mimetics. Bottom-up approaches to functionalize synthetic scaffolds with well-characterized components (e.g. laminin, fibronectin, hyaluronic acid, vascular endothelial growth factors) 105 have resulted in some success for very specialized applications, but there is still a long way to go until fully functional ECM mimetics can be used as synthetic scaffolds.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.




اللجنة التحضيرية للمؤتمر الحسيني الثاني عشر في جامعة بغداد تعلن مجموعة من التوصيات
السيد الصافي يزور قسم التربية والتعليم ويؤكد على دعم العملية التربوية للارتقاء بها
لمنتسبي العتبة العباسية قسم التطوير ينظم ورشة عن مهارات الاتصال والتواصل الفعال
في جامعة بغداد.. المؤتمر الحسيني الثاني عشر يشهد جلسات بحثية وحوارية