Read More
Date: 22-4-2019
1555
Date: 20-8-2018
1708
Date: 2-5-2019
1777
|
The inverse trigonometric functions are the inverse functions of the trigonometric functions, written , , , , , and .
Alternate notations are sometimes used, as summarized in the following table.
alternate notations | |
(Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 207) | |
(Spanier and Oldham 1987, p. 333), (Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 208; Jeffrey 2000, p. 127) | |
(Spanier and Oldham 1987, p. 333), (Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 207) | |
(Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 209) | |
(Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 207) | |
(Spanier and Oldham 1987, p. 333), (Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik 2000, p. 208; Jeffrey 2000, p. 127) |
The inverse trigonometric functions are multivalued. For example, there are multiple values of such that , so is not uniquely defined unless a principal value is defined. Such principal values are sometimes denoted with a capital letter so, for example, the principal value of the inverse sine may be variously denoted or (Beyer 1987, p. 141). On the other hand, the notation (etc.) is also commonly used denote either the principal value or any quantity whose sine is an (Zwillinger 1995, p. 466). Worse still, the principal value and multiply valued notations are sometimes reversed, with for example denoting the principal value and denoting the multivalued functions (Spanier and Oldham 1987, p. 333).
Since the inverse trigonometric functions are multivalued, they require branch cuts in the complex plane. Differing branch cut conventions are possible, but those adopted in this work follow those used by the Wolfram Language, summarized below.
function name | function | Wolfram Language | branch cut(s) |
inverse cosecant | ArcCsc[z] | ||
inverse cosine | ArcCos[z] | and | |
inverse cotangent | ArcCot[z] | ||
inverse secant | ArcSec[z] | ||
inverse sine | ArcSin[z] | and | |
inverse tangent | ArcTan[z] | and |
Different conventions are possible for the range of these functions for real arguments. Following the convention used by the Wolfram Language, the inverse trigonometric functions defined in this work have the following ranges for domains on the real line , illustrated above.
function name | function | domain | range |
inverse cosecant | or | ||
inverse cosine | |||
inverse cotangent | or | ||
inverse secant | or | ||
inverse sine | |||
inverse tangent |
Inverse-forward identities are
(1) |
|||
(2) |
|||
(3) |
Forward-inverse identities are
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
Inverse sum identities include
(10) |
|||
(11) |
|||
(12) |
where equation (11) is valid only for .
Complex inverse identities in terms of natural logarithms include
(13) |
|||
(14) |
|||
(15) |
REFERENCES:
Abramowitz, M. and Stegun, I. A.(Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.
Apostol, T. M. "Inverses of the Trigonometric Functions." §6.21 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 253-256, 1967.
Beyer, W. H.(Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, 1987.
Harris, J. W. and Stocker, H. "Inverse Trigonometric Functions." Handbook of Mathematics and Computational Science. New York: Springer-Verlag, pp. 306-318, 1998.
Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.
Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.
Trott, M. "Inverse Trigonometric and Hyperbolic Functions." §2.2.5 in The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 180-191, 2004. http://www.mathematicaguidebooks.org/.
Zwillinger, D.(Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|