 
					
					
						q-Polygamma Function					
				 
				
					
						 المؤلف:  
						Borwein, J. M. and Borwein, P. B.
						 المؤلف:  
						Borwein, J. M. and Borwein, P. B.					
					
						 المصدر:  
						"Evaluation of Sums of Reciprocals of Fibonacci Sequences." §3.7 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley
						 المصدر:  
						"Evaluation of Sums of Reciprocals of Fibonacci Sequences." §3.7 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 29-8-2019
						29-8-2019
					
					
						 1452
						1452					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				q-Polygamma Function
 
The  -digamma function
-digamma function  , also denoted
, also denoted  , is defined as
, is defined as
	
		
			|  | (1) | 
	
where  is the q-gamma function. It is also given by the sum
 is the q-gamma function. It is also given by the sum
	
		
			|  | (2) | 
	
The  -polygamma function
-polygamma function  (also denoted
 (also denoted  ) is defined by
) is defined by
	
		
			|  | (3) | 
	
It is implemented in the Wolfram Language as QPolyGamma[n, z, q], with the  -digamma function implemented as the special case QPolyGamma[z, q].
-digamma function implemented as the special case QPolyGamma[z, q].
Certain classes of sums can be expressed in closed form using the  -polygamma function, including
-polygamma function, including
The  -polygamma functions are related to the Lambert series
-polygamma functions are related to the Lambert series
(Borwein and Borwein 1987, pp. 91 and 95).
An identity connecting  -polygamma to elliptic functions is given by
-polygamma to elliptic functions is given by
	
		
			| ![pi-i[psi_(phi^2)^((0))(1/2-(ipi)/(4lnphi))-psi_(phi^2)^((0))(1/2+(ipi)/(4lnphi))] 
 =-(lnphi)theta_2^2(phi^(-2)),](http://mathworld.wolfram.com/images/equations/q-PolygammaFunction/NumberedEquation4.gif) | (9) | 
	
where  is the golden ratio and
 is the golden ratio and  is an Jacobi theta function.
 is an Jacobi theta function.
REFERENCES:
Borwein, J. M. and Borwein, P. B. "Evaluation of Sums of Reciprocals of Fibonacci Sequences." §3.7 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 91-101, 1987.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة