Fibonacci Hyperbolic Functions
المؤلف:
Sloane, N. J. A
المصدر:
Sequences A001519/M1439, A001906/M2741, A002390/M3318, and A104457 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
20-7-2019
1899
Fibonacci Hyperbolic Functions
Let
(OEIS A104457), where
is the golden ratio, and
(OEIS A002390).

Define the Fibonacci hyperbolic sine by
The function satisfies
 |
(9)
|
and for
,
 |
(10)
|
where
is a Fibonacci number. For
, 2, ..., the values are therefore 1, 3, 8, 21, 55, ... (OEIS A001906).

Define the Fibonacci hyperbolic cosine by
This function satisfies
 |
(14)
|
and for
,
 |
(15)
|
where
is a Fibonacci number. For
, 2, ..., the values are therefore 2, 5, 13, 34, 89, ... (OEIS A001519).

Similarly, the Fibonacci hyperbolic tangent is defined by
 |
(16)
|
and for
,
 |
(17)
|
For
, 2, ..., the values are therefore 1/2, 3/5, 8/13, 21/34, 55/89, ... (OEIS A001906 and A001519).
REFERENCES:
Sloane, N. J. A. Sequences A001519/M1439, A001906/M2741, A002390/M3318, and A104457 in "The On-Line Encyclopedia of Integer Sequences."
Stakhov, A. and Tkachenko, I. "Hyperbolic Fibonacci Trigonometry." Dokl. Akad. Nauk Ukrainy, No. 7, 9-14, 1993.
Trzaska, Z. W. "On Fibonacci Hyperbolic Trigonometry and Modified Numerical Triangles." Fib. Quart. 34, 129-138, 1996.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة