Read More
Date: 20-8-2018
3030
Date: 30-3-2019
1543
Date: 19-9-2018
3179
|
The 34 distinct convergent hypergeometric series of order two enumerated by Horn (1931) and corrected by Borngässer (1933). There are 14 complete series for which :
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
(of which , , , and are precisely Appell hypergeometric functions), and 20 confluent series with , , and not both 2:
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
|||
(25) |
|||
(26) |
|||
(27) |
|||
(28) |
|||
(29) |
|||
(30) |
|||
(31) |
|||
(32) |
|||
(33) |
|||
(34) |
(Erdélyi et al. 1981, pp. 224-226; Srivastava and Karlsson 1985, pp. 24-26). Here, the sums are taken over nonnegative integers and .
Note that , , and as defined by Erdélyi et al. (1981) are erroneous; the correct formulas given above may be found in Srivastava and Karlsson (1985, pp. 25-26).
REFERENCES:
Borngässer, L. Über hypergeometrische Funktionen zweier Veränderlichen. Dissertation. Darmstadt, Germany: University of Darmstadt, 1933.
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "Horn's List" and "Convergence of the Series." §5.7.1 and 5.7.2 in Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 224-229, 1981.
Horn, J. "Hypergeometrische Funktionen zweier Veränderlichen." Math. Ann. 105, 381-407, 1931.
Srivastava, H. M. and Karlsson, P. W. Multiple Gaussian Hypergeometric Series. Chichester, England: Ellis Horwood, 1985.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|