Clebsch-Gordan Coefficient					
				 
				
					
						
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						
						 المصدر:  
						"Vector-Addition Coefficients." §27.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						16-4-2019
					
					
						
						3136					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Clebsch-Gordan Coefficient
Clebsch-Gordan coefficients are mathematical symbol used to integrate products of three spherical harmonics. Clebsch-Gordan coefficients commonly arise in applications involving the addition of angular momentum in quantum mechanics. If products of more than three spherical harmonics are desired, then a generalization known as Wigner 6j-symbols or Wigner 9j-symbols is used.
 
The Clebsch-Gordan coefficients are variously written as 
, 
, 
, or 
. The Clebsch-Gordan coefficients are implemented in the Wolfram Language as ClebschGordan[
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline5.gif" style="height:14px; width:5px" />j1, m1
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline6.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline7.gif" style="height:14px; width:5px" />j2, m2
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline8.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline9.gif" style="height:14px; width:5px" />j, m
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline10.gif" style="height:14px; width:5px" />].
The Clebsch-Gordan coefficients are defined by
	
		
			  | 
			
			 (1) 
			 | 
		
	
where 
, and satisfy
	
		
			  | 
			
			 (2) 
			 | 
		
	
for 
.
Care is needed in interpreting analytic representations of Clebsch-Gordan coefficients since these coefficients are defined only on measure zero sets. As a result, "generic" symbolic formulas may not hold it certain cases, if at all. For example, ClebschGordan[
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline13.gif" style="height:14px; width:5px" />1, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline14.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline15.gif" style="height:14px; width:5px" />j2, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline16.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline17.gif" style="height:14px; width:5px" />2, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline18.gif" style="height:14px; width:5px" />] evaluates to an expression that is "generically" correct but not correct for the special case 
, whereas ClebschGordan[
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline20.gif" style="height:14px; width:5px" />1, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline21.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline22.gif" style="height:14px; width:5px" />1, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline23.gif" style="height:14px; width:5px" />, 
{" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline24.gif" style="height:14px; width:5px" />2, 0
}" src="http://mathworld.wolfram.com/images/equations/Clebsch-GordanCoefficient/Inline25.gif" style="height:14px; width:5px" />] evaluates to the correct value 
.
The coefficients are subject to the restrictions that 
 be positive integers or half-integers, 
 is an integer, 
 are positive or negative integers or half integers,
and 
, 
, and 
 (Abramowitz and Stegun 1972, p. 1006). In addition, by use of symmetry relations, coefficients may always be put in the standard form 
 and 
.
The Clebsch-Gordan coefficients are sometimes expressed using the related Racah V-coefficients,
	
		
			  | 
			
			 (6) 
			 | 
		
	
or Wigner 3j-symbols. Connections among the three are
	
		
			  | 
			
			 (7) 
			 | 
		
	
	
		
			  | 
			
			 (8) 
			 | 
		
	
	
		
			  | 
			
			 (9) 
			 | 
		
	
They have the symmetry
	
		
			  | 
			
			 (10) 
			 | 
		
	
and obey the orthogonality relationships
	
		
			  | 
			
			 (11) 
			 | 
		
	
	
		
			  | 
			
			 (12) 
			 | 
		
	
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Vector-Addition Coefficients." §27.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 1006-1010, 1972.
Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. "Clebsch-Gordan Coefficients." Complement 
 in Quantum Mechanics, Vol. 2. New York: Wiley, pp. 1035-1047, 1977.
Condon, E. U. and Shortley, G. §3.6-3.14 in The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, pp. 56-78, 1951.
Fano, U. and Fano, L. Basic Physics of Atoms and Molecules. New York: Wiley, p. 240, 1959.
Messiah, A. "Clebsch-Gordan (C.-G.) Coefficients and '3j' Symbols." Appendix C.I in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 1054-1060, 1962.
Rose, M. E. Elementary Theory of Angular Momentum. New York: Dover, 1995.
Shore, B. W. and Menzel, D. H. "Coupling and Clebsch-Gordan Coefficients." §6.2 in Principles of Atomic Spectra. New York: Wiley, pp. 268-276, 1968.
Sobel'man, I. I. "Angular Momenta." Ch. 4 in Atomic Spectra and Radiative Transitions, 2nd ed. Berlin: Springer-Verlag, 1992.
				
				
					
					
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة