Read More
Date: 26-7-2019
1553
Date: 8-9-2019
1761
Date: 2-5-2019
1532
|
The Clebsch-Gordan coefficients are variously written as , , , or . The Clebsch-Gordan coefficients are implemented in the Wolfram Language as ClebschGordan[j1, m1, j2, m2, j, m].
The Clebsch-Gordan coefficients are defined by
(1) |
where , and satisfy
(2) |
for .
Care is needed in interpreting analytic representations of Clebsch-Gordan coefficients since these coefficients are defined only on measure zero sets. As a result, "generic" symbolic formulas may not hold it certain cases, if at all. For example, ClebschGordan[1, 0, j2, 0, 2, 0] evaluates to an expression that is "generically" correct but not correct for the special case , whereas ClebschGordan[1, 0, 1, 0, 2, 0] evaluates to the correct value .
The coefficients are subject to the restrictions that be positive integers or half-integers, is an integer, are positive or negative integers or half integers,
(3) |
|||
(4) |
|||
(5) |
and , , and (Abramowitz and Stegun 1972, p. 1006). In addition, by use of symmetry relations, coefficients may always be put in the standard form and .
The Clebsch-Gordan coefficients are sometimes expressed using the related Racah V-coefficients,
(6) |
or Wigner 3j-symbols. Connections among the three are
(7) |
(8) |
(9) |
They have the symmetry
(10) |
and obey the orthogonality relationships
(11) |
(12) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Vector-Addition Coefficients." §27.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 1006-1010, 1972.
Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. "Clebsch-Gordan Coefficients." Complement in Quantum Mechanics, Vol. 2. New York: Wiley, pp. 1035-1047, 1977.
Condon, E. U. and Shortley, G. §3.6-3.14 in The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, pp. 56-78, 1951.
Fano, U. and Fano, L. Basic Physics of Atoms and Molecules. New York: Wiley, p. 240, 1959.
Messiah, A. "Clebsch-Gordan (C.-G.) Coefficients and '3j' Symbols." Appendix C.I in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 1054-1060, 1962.
Rose, M. E. Elementary Theory of Angular Momentum. New York: Dover, 1995.
Shore, B. W. and Menzel, D. H. "Coupling and Clebsch-Gordan Coefficients." §6.2 in Principles of Atomic Spectra. New York: Wiley, pp. 268-276, 1968.
Sobel'man, I. I. "Angular Momenta." Ch. 4 in Atomic Spectra and Radiative Transitions, 2nd ed. Berlin: Springer-Verlag, 1992.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|