Read More
Date: 13-2-2019
734
Date: 19-1-2019
770
Date: 11-3-2019
2377
|
A transformation of a polynomial equation which is of the form where and are polynomials and does not vanish at a root of . The cubic equation is a special case of such a transformation. Tschirnhaus (1683) showed that a polynomial of degree can be reduced to a form in which the and terms have 0 coefficients. In 1786, E. S. Bring showed that a general quintic equation can be reduced to the form
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the , , and terms for a general polynomial equation of degree .
REFERENCES:
Boyer, C. B. A History of Mathematics. New York: Wiley, pp. 472-473, 1968.
Tschirnhaus. Acta Eruditorum. 1683.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
وفد كلية الزراعة في جامعة كربلاء يشيد بمشروع الحزام الأخضر
|
|
|