Read More
Date: 9-3-2017
1043
Date: 7-1-2016
2027
Date: 11-3-2019
4768
|
A transformation of a polynomial equation which is of the form where and are polynomials and does not vanish at a root of . The cubic equation is a special case of such a transformation. Tschirnhaus (1683) showed that a polynomial of degree can be reduced to a form in which the and terms have 0 coefficients. In 1786, E. S. Bring showed that a general quintic equation can be reduced to the form
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the , , and terms for a general polynomial equation of degree .
REFERENCES:
Boyer, C. B. A History of Mathematics. New York: Wiley, pp. 472-473, 1968.
Tschirnhaus. Acta Eruditorum. 1683.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|