Read More
Date: 6-3-2017
![]()
Date: 6-3-2017
![]()
Date: 17-2-2019
![]() |
A transformation of a polynomial equation which is of the form
where
and
are polynomials and
does not vanish at a root of
. The cubic equation is a special case of such a transformation. Tschirnhaus (1683) showed that a polynomial of degree
can be reduced to a form in which the
and
terms have 0 coefficients. In 1786, E. S. Bring showed that a general quintic equation can be reduced to the form
![]() |
In 1834, G. B. Jerrard showed that a Tschirnhaus transformation can be used to eliminate the ,
, and
terms for a general polynomial equation of degree
.
REFERENCES:
Boyer, C. B. A History of Mathematics. New York: Wiley, pp. 472-473, 1968.
Tschirnhaus. Acta Eruditorum. 1683.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|