المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اقليم الغابات المعتدلة الدافئة
2024-11-05
ماشية اللحم في كازاخستان (النوع كازاك ذو الرأس البيضاء)
2024-11-05
الانفاق من طيبات الكسب
2024-11-05
امين صادق واخر خائن منحط
2024-11-05
اماني اليهود بدخول الجنة
2024-11-05
امامة إبراهيم اقترنت بكلمات
2024-11-05

Atomic Structure: Orbitals
26-1-2016
كيف تضع الرعاشات بيضها؟
9-3-2021
انواع الرعي - الرعي البدائي - رعي الرنة
25-1-2023
السلوك الواعي إعلاميا- أولا : مهارة حسن الاختيار
18-1-2022
سعد الخير الأموي
11-10-2017
درجات الورع‏
23-8-2016

Sendov Conjecture  
  
760   03:16 مساءً   date: 23-2-2019
Author : Rahman, Q. I. and Schmeisser, G
Book or Source : Analytic Theory of Polynomials. Oxford, England: Oxford University Press, 2002
Page and Part : ...


Read More
Date: 17-1-2019 920
Date: 13-2-2019 750
Date: 13-2-2019 1968

Sendov Conjecture

The Sendov conjecture, proposed by Blagovest Sendov circa 1958, that for a polynomial f(z)=(z-r_1)(z-r_2)...(z-r_n) with n>=2 and each root r_k located inside the closed unit disk |z|<=1 in the complex plane, it must be the case that every closed disk of radius 1 centered at a root r_k will contain a critical point of f. Since the Lucas-Gauss theorem implies that the critical points (i.e., the roots of the derivative) of f must themselves lie in the unit disk, it seems completely implausible that the conjecture could be false. Yet at present it has not been proved even for polynomials with real coefficients, nor for any polynomials whose degree exceeds eight.


 

REFERENCES:

Rahman, Q. I. and Schmeisser, G. Analytic Theory of Polynomials. Oxford, England: Oxford University Press, 2002.

Schmeisser, G. "The Conjectures of Sendov and Smale." In Approximation Theory: A Volume Dedicated to Blagovest Sendov(Ed. B. Bojoanov). Sofia, Bulgaria: DARBA, pp. 353-369, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.