Polynomial Order					
				 
				
					
						
						 المؤلف:  
						Lidl, R. and Niederreiter, H.					
					
						
						 المصدر:  
						Introduction to Finite Fields and their Applications, 2nd ed. New York: Cambridge University Press, 1994.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						13-2-2019
					
					
						
						1114					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Polynomial Order
 
The highest order power in a univariate polynomial is known as its order (or, more properly, its polynomial degree). For example, the polynomial
is of order 
, denoted 
. The order of a polynomial is implemented in the Wolfram Language as Exponent[poly, x].
It is preferable to use the word "degree" for the highest exponent in a polynomial, since a completely different meaning is given to the word "order" in polynomials taken modulo some integer (where this meaning is the one used in themultiplicative order of a modulus). In particular, the order of a polynomial 
 with 
 is the smallest integer 
for which 
 divides 
 (Lidl and Niederreiter 1994). For example, in the finite field GF(2), the order of 
 is 31, since
This concept is closely related to that of the multiplicative order.
If 
 is an irreducible polynomial of degree 
, then its order has to divide the order of the multiplicative group in the corresponding field extension, i.e., 
 for modulus 
.
REFERENCES:
Lidl, R. and Niederreiter, H. Introduction to Finite Fields and their Applications, 2nd ed. New York: Cambridge University Press, 1994.
				
				
					
					
					 الاكثر قراءة في  مواضيع عامة في الجبر 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة