Read More
Date: 11-3-2019
![]()
Date: 8-3-2017
![]()
Date: 17-2-2019
![]() |
A polynomial discriminant is the product of the squares of the differences of the polynomial roots . The discriminant of a polynomial is defined only up to constant factor, and several slightly different normalizations can be used. For a polynomial
![]() |
(1) |
of degree , the most common definition of the discriminant is
![]() |
(2) |
which gives a homogenous polynomial of degree in the coefficients of
.
The discriminant of a polynomial is given in terms of a resultant as
![]() |
(3) |
where is the derivative of
and
is the degree of
. For fields of infinite characteristic,
so the formula reduces to
![]() |
(4) |
The discriminant of a univariate polynomial is implemented in the Wolfram Language as Discriminant[p, x].
The discriminant of the quadratic equation
![]() |
(5) |
is given by
![]() |
(6) |
The discriminant of the cubic equation
![]() |
(7) |
is given by
![]() |
(8) |
The discriminant of a quartic equation
![]() |
(9) |
is
![]() |
(10) |
(Schroeppel 1972).
REFERENCES:
Akritas, A. G. Elements of Computer Algebra with Applications. New York: Wiley, 1989.
Basu, S.; Pollack, R.; and Roy, M.-F. Algorithms in Real Algebraic Geometry. Berlin: Springer-Verlag, 2003.
Caviness, B. F. and Johnson, J. R. (Eds.). Quantifier Elimination and Cylindrical Algebraic Decomposition. New York: Springer-Verlag, 1998.
Cohen, H. "Resultants and Discriminants." §3.3.2 in A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, pp. 119-123, 1993.
Cox, D.; Little, J.; and O'Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Algebraic Geometry and Commutative Algebra, 2nd ed. New York: Springer-Verlag, 1996.
Mignotte, M. and Stefănescu, D. Polynomials: An Algorithmic Approach. Singapore: Springer-Verlag, 1999.
Schroeppel, R. Item 4 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 4, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/geometry.html#item4.
Zippel, R. Effective Polynomial Computation. Boston, MA: Kluwer, 1993.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|