تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Brachistochrone Problem
المؤلف:
Ashby, N.; Brittin, W. E.; Love, W. F.; and Wyss, W.
المصدر:
"Brachistochrone with Coulomb Friction." Amer. J. Phys. 43
الجزء والصفحة:
...
12-10-2018
3672
Brachistochrone Problem
Find the shape of the curve down which a bead sliding from rest and accelerated by gravity will slip (without friction) from one point to another in the least time. The term derives from the Greek (brachistos) "the shortest" and
(chronos) "time, delay."
The brachistochrone problem was one of the earliest problems posed in the calculus of variations. Newton was challenged to solve the problem in 1696, and did so the very next day (Boyer and Merzbach 1991, p. 405). In fact, the solution, which is a segment of a cycloid, was found by Leibniz, L'Hospital, Newton, and the two Bernoullis. Johann Bernoulli solved the problem using the analogous one of considering the path of light refracted by transparent layers of varying density (Mach 1893, Gardner 1984, Courant and Robbins 1996). Actually, Johann Bernoulli had originally found an incorrect proof that the curve is a cycloid, and challenged his brother Jakob to find the required curve. When Jakob correctly did so, Johann tried to substitute the proof for his own (Boyer and Merzbach 1991, p. 417).
In the solution, the bead may actually travel uphill along the cycloid for a distance, but the path is nonetheless faster than a straight line (or any other line).
The time to travel from a point to another point
is given by the integral
![]() |
(1) |
where is the arc length and
is the speed. The speed at any point is given by a simple application of conservation of energy equating kinetic energy to gravitational potential energy,
![]() |
(2) |
giving
![]() |
(3) |
Plugging this into (◇) together with the identity
![]() |
(4) |
then gives
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
The function to be varied is thus
![]() |
(7) |
To proceed, one would normally have to apply the full-blown Euler-Lagrange differential equation
![]() |
(8) |
However, the function is particularly nice since
does not appear explicitly. Therefore,
, and we can immediately use the Beltrami identity
![]() |
(9) |
Computing
![]() |
(10) |
subtracting from
, and simplifying then gives
![]() |
(11) |
Squaring both sides and rearranging slightly results in
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where the square of the old constant has been expressed in terms of a new (positive) constant
. This equation is solved by the parametric equations
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
which are--lo and behold--the equations of a cycloid.
If kinetic friction is included, the problem can also be solved analytically, although the solution is significantly messier. In that case, terms corresponding to the normal component of weight and the normal component of the acceleration(present because of path curvature) must be included. Including both terms requires a constrained variational technique (Ashby et al. 1975), but including the normal component of weight only gives an approximate solution. The tangent and normal vectors are
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
gravity and friction are then
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
and the components along the curve are
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
so Newton's Second Law gives
![]() |
(23) |
But
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
(26) |
![]() |
(27) |
so
![]() |
(28) |
Using the Euler-Lagrange differential equation gives
![]() |
(29) |
This can be reduced to
![]() |
(30) |
Now letting
![]() |
(31) |
the solution is
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
REFERENCES:
Ashby, N.; Brittin, W. E.; Love, W. F.; and Wyss, W. "Brachistochrone with Coulomb Friction." Amer. J. Phys. 43, 902-905, 1975.
Boyer, C. B. and Merzbach, U. C. A History of Mathematics, 2nd ed. New York: Wiley, 1991.
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, 1996.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 130-131, 1984.
Haws, L. and Kiser, T. "Exploring the Brachistochrone Problem." Amer. Math. Monthly 102, 328-336, 1995.
Hayen, J. C. "Brachistochrone with Coulomb Friction." Int. J. Non-Linear Mech. 40, 1057-1075, 2005.
Lipp, S. C. "Brachistochrone with Coulomb Friction." SIAM J. Control Optim. 35, 562-584, 1997.
Mach, E. The Science of Mechanics. Chicago, IL: Open Court, 1893.
Phillips, J. P. "Brachistochrone, Tautochrone, Cycloid--Apple of Discord." Math. Teacher 60, 506-508, 1967.
Smith, D. E. History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, p. 326, 1958.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 148-149, 1999.
Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 60-66 and 385-389, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 46, 1991.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
