 
					
					
						Change of Variables Theorem					
				 
				
					
						 المؤلف:  
						Jeffreys, H. and Jeffreys, B. S
						 المؤلف:  
						Jeffreys, H. and Jeffreys, B. S					
					
						 المصدر:  
						"Change of Variable in an Integral." §1.1032 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press
						 المصدر:  
						"Change of Variable in an Integral." §1.1032 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 17-9-2018
						17-9-2018
					
					
						 2122
						2122					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Change of Variables Theorem
A theorem which effectively describes how lengths, areas, volumes, and generalized  -dimensional volumes (contents) are distorted by differentiable functions. In particular, the change of variables theorem reduces the whole problem of figuring out the distortion of the content to understanding the infinitesimal distortion, i.e., the distortion of the derivative (a linear map), which is given by the linear map's determinant. So
-dimensional volumes (contents) are distorted by differentiable functions. In particular, the change of variables theorem reduces the whole problem of figuring out the distortion of the content to understanding the infinitesimal distortion, i.e., the distortion of the derivative (a linear map), which is given by the linear map's determinant. So  is an area-preserving linear transformation iff
 is an area-preserving linear transformation iff  , and in more generality, if
, and in more generality, if  is any subset of
 is any subset of  , the content of its image is given by
, the content of its image is given by  times the content of the original. The change of variables theorem takes this infinitesimal knowledge, and applies calculus by breaking up the domain into small pieces and adds up the change in area, bit by bit.
 times the content of the original. The change of variables theorem takes this infinitesimal knowledge, and applies calculus by breaking up the domain into small pieces and adds up the change in area, bit by bit.
The change of variable formula persists to the generality of differential k-forms on manifolds, giving the formula
	
		
			|  | (1) | 
	
under the conditions that  and
 and  are compact connected oriented manifolds with nonempty boundaries,
 are compact connected oriented manifolds with nonempty boundaries,  is a smooth map which is an orientation-preserving diffeomorphism of the boundaries.
 is a smooth map which is an orientation-preserving diffeomorphism of the boundaries.
In one dimension, the explicit statement of the theorem for  a continuous function of
 a continuous function of  is
 is
	
		
			|  | (2) | 
	
where  is a differential mapping on the interval
 is a differential mapping on the interval ![[c,d]](http://mathworld.wolfram.com/images/equations/ChangeofVariablesTheorem/Inline13.gif) and
 and  is the interval
 is the interval ![[a,b]](http://mathworld.wolfram.com/images/equations/ChangeofVariablesTheorem/Inline15.gif) with
 with  and
 and  (Lax 1999). In two dimensions, the explicit statement of the theorem is
 (Lax 1999). In two dimensions, the explicit statement of the theorem is
	
		
			|  | (3) | 
	
and in three dimensions, it is
	
		
			|  | (4) | 
	
where  is the image of the original region
 is the image of the original region  ,
,
	
		
			|  | (5) | 
	
is the Jacobian, and  is a global orientation-preserving diffeomorphism of
 is a global orientation-preserving diffeomorphism of  and
 and  (which are open subsets of
 (which are open subsets of  ).
).
The change of variables theorem is a simple consequence of the curl theorem and a little de Rham cohomology. The generalization to  dimensions requires no additional assumptions other than the regularity conditions on the boundary.
 dimensions requires no additional assumptions other than the regularity conditions on the boundary.
REFERENCES:
Jeffreys, H. and Jeffreys, B. S. "Change of Variable in an Integral." §1.1032 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 32-33, 1988.
Kaplan, W. "Change of Variables in Integrals." §4.6 in Advanced Calculus, 3rd ed. Reading, MA: Addison-Wesley, pp. 238-245, 1984.
Lax, P. D. "Change of Variables in Multiple Integrals." Amer. Math. Monthly 106, 497-501, 1999.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة