تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Sonoluminescence
المؤلف:
Franklin Potter and Christopher Jargodzki
المصدر:
Mad about Modern Physics
الجزء والصفحة:
p 71
25-10-2016
329
Sonoluminescence
Sound energy is converted directly into light energy by a phenomenon called sonoluminescence. Discovered in the 1800s, the process lay dormant for more than 100 years, only to experience a revival in the 1990s. How does one convert a small amount of sound energy into a brief but brilliant flash of light?
Answer
The light produced by sonoluminescence must originate in atomic transitions, electrons in excited states in atoms jumping down to lower energy levels and emitting photons to conserve energy and angular momentum. The apparatus consists of distilled water with an admixture of a little helium or other inert gas in a spherical flask surrounded by a piezoelectric crystal or two to send in sound waves at practically any frequency. The details of the apparatus can be found at many sites on the Internet.
The sound energy creates bubbles in the water that rapidly collapse and emit a flash of light from their central region. Instead of sound waves, a powerful laser pulse also can create the bubbles for the pulse of light. The spectrum of the emitted sonoluminescent light pulse is similar to a blackbody spectrum of an object at about 8,000 K, hotter than the Sun’s surface temperature of about 6000 K! And the pulse of light lasts for picoseconds, with such an intensity that it can be seen by the unaided human eye.
The reference below provides experimental results that support the popular theory that a plasma inside the bubble causes sonoluminescence. The research team fitted their pulses’ spectra to a blackbody radiation curve and found the correspondence to plasma temperatures at about 8000 K. The gas in the bubble becomes a partially ionized plasma, and the radiation is emitted by an energy cascade from ions to electrons and finally to photons.
More details will be understood eventually as faster optical response systems become available to better follow the time development of the light emission process. In fact, how quickly a state-of-the-art photo detector system operates is measured against what initial parts of the sonoluminescent pulse of light can be discerned!