1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : مواضيع عامة في الفيزياء : طرائف الفيزياء :

Space-Filling Geometry

المؤلف:  Franklin Potter and Christopher Jargodzki

المصدر:  Mad about Modern Physics

الجزء والصفحة:  p 22

7-10-2016

399

Space-Filling Geometry

Cubes can be placed next to each other in three directions to fill all of 3D space. Regular octahedrons can fill 3D space also. Spheres of the same radius cannot. Can regular tetrahedrons fill all of D space and leave no gaps? Can regular dodecahedrons and regular icosahedrons?

Answer

First consider a two-dimensional flat space. A plane tesselation (or two dimensional honeycomb) is an infinite set of polygons fitting together to cover the whole plane once, with every side of each polygon belonging to just one other polygon. A regular tesselation has regular polygons. There are three regular tesselations of the plane: equilateral triangles, squares, and regular hexagons. There are additional plane tesselations with two or more convex polygon shapes. One also can cover the plane with Penrose tiles, polygon pairs with at least one polygon not being convex.

Now consider an additional spatial dimension. A three-dimensional honeycomb (or solid tesselation) is an infinite set of polyhedrons fitting together to fill all space once, so that every face of each polyhedron belongs to one other polyhedron. If we require all the polyhedrons to be identical, then the only regular honeycomb is the one filled with cubes, eight at each vertex. If we allow two different regular polyhedrons, one can fill the space with eight regular tetrahedrons and six regular octahedrons surrounding each vertex. These space fillings and others determine many of the natural crystal structures.

From the apparent simplicity of a 3D space filled with cubes, one may think that this solid tesselation would be the most likely mathematically if real space is discrete instead of continuous. However, mathematicians can show that the most likely and interesting 3D discrete space is the non-Euclidean tessellation by dodecahedrons, of which there are two kinds, depending on the angle of twist in relating one dodecahedron to the adjacent one. For further information see the Thurston and Weeks reference below.

EN

تصفح الموقع بالشكل العمودي