Language as a shaper of thought
المؤلف:
Vyvyan Evans and Melanie Green
المصدر:
Cognitive Linguistics an Introduction
الجزء والصفحة:
C3P98
2025-12-08
36
Language as a shaper of thought
If there is empirical evidence against the hypothesis that language determines thought (the strong version of the Sapir-Whorf hypothesis), then the question that naturally arises is whether language can influence or shape thought in any way. It is this weak version of the Sapir-Whorf hypothesis that underlies much recent research into the nature of the relationship between language and thought, and some of the findings suggest that the answer to this question might be ‘yes’. There are two lines of evidence that support a weak version of the Sapir-Whorf hypothesis. These are considered below.
Language facilitates conceptualisation
The first line of evidence relates to linguistic determinism and the idea that language facilitates our conceptualising capacity. The assumption in cognitive linguistics is that language reflects patterns of thought, and can be seen as a means of encoding and externalising thought. It follows from this view that patterns of meaning in language represent a conventional means (an accepted norm in a given linguistic community) of encoding conceptual structure and organisation for purposes of communication. This is known as the symbolic function of language, which we described in Chapter 1. It also follows from this view that different ways of expressing or encoding ideas in language represent different patterns of thought, so that encountering different linguistic ‘options’ for encoding ideas can influence the way we reason.
A clear example of the influence of language upon thought is the experiment described by Gentner and Gentner (1982) in which they trained different English-speaking subjects in analogical models of electricity. An analogical model relies upon a relatively well known scenario or system for understanding a less well known system, where the parts and relations of the well known system stand in a similar relation to those in the less well known system, here electricity. Through analogy (comparison based on perceived similarity) subjects can reason about electricity using the well known model. One group was taught that electricity can be represented as a teeming crowd of people, while another group was taught that electricity can be represented as water flowing through a pipe, as in a hydraulic system. The mappings between these two analogical models and an electrical circuit are summarised in Tables 3.2 and 3.3.
Importantly, each analogical model correctly predicted different aspects of the behaviour of an electrical circuit. For example, a circuit with batteries connected serially will produce more current than a circuit with batteries in parallel. This is predicted by the analogy based on the hydraulic system, where serial pumps one after the other will produce a greater flow rate of water. In the moving crowd model, where the battery corresponds simply to the crowd, it is difficult to think of a meaningful contrast between a serial and a parallel connection.
Serial resistors in an electrical circuit reduce current, while parallel resistors increase it. The moving crowd model is better at predicting this aspect of the behaviour of electricity, where resistance is modelled in terms of gates. Parallel gates allow more people through, while serial gates allow fewer people through. Gentner and Gentner hypothesised that if subjects used different analogical models to reason about the circuit, then each group should produce dramatically divergent results, which is exactly what they found. Subjects who were trained in the hydraulic system model were better at correctly predicting the effect of serial versus parallel batteries on current, while subjects who were familiar with the moving crowd model were better at predicting the effect of serial versus parallel resistors on current. This study reveals that different ‘choices’ of language for representing concepts can indeed affect non-linguistic thought such as reasoning and problem-solving.

Cross-linguistic differences and their effect on non-linguistic thought and action
The second thread of evidence in support of a weak version of the Sapir-Whorf hypothesis relates to linguistic relativity: how cross-linguistic differences influence non-linguistic thought and action. We begin by revisiting the domain of SPACE. We noted earlier that Guugu Yimithirr exclusively employs a field-based frame of reference for locating entities in space. An important consequence of this is that speakers of Guguu Yimithirr must be able to dead-reckon their location with respect to the cardinal points of their system, wherever they are in space. Based on a comparative study of Guguu Yimithirr speakers and Dutch speakers, Levinson (1997) found that the ability of Guugu Yimithirr speakers to calculate their location had profound consequences for non-linguistic tasks. It was found that when Guugu Yimithirr speakers were taken to an unfamiliar terrain with restricted visibility, such as a dense rainforest, they were still able to work out their location, identifying particular directions with an error rate of less than 4 per cent. This contrasted with a comparable experiment involving Dutch speakers, who were much less accurate. Like English, Dutch makes extensive use of other non-field-based frames of reference such as ground based and projector-based reference. According to Levinson, this type of experiment constitutes evidence for a real Whorfian effect, in which the nature of spatial representation in language has consequences for a speaker’s non linguistic abilities. However, it’s worth pointing out that experience, as well as language, may play a part in these sorts of experiments. After all, Guugu Yimithirr speakers are likely to have more experience of assessing directions and finding their way around rainforests than the average Dutch speaker.
Next, we consider a study that investigated the influence of the language of time on non-linguistic thought and action. This study was carried out by cognitive psychologist Lera Boroditsky (2001). Boroditsky was interested in investigating whether the different lexical concepts for TIME in English and Mandarin would produce a noticeable effect on reaction time in linguistic experiments. Recall that we observed earlier that a common way of elaborating the concepts EARLIER and LATER in Chinese is by means of positions on the vertical axis: ‘upper’ and ‘lower’. In English, these concepts are elaborated primarily in terms of the horizontal axis: ‘before’ and ‘after’. Boroditsky exposed Mandarin and English speakers to primes like the ones in Figure 3.23, which represented either the vertical or the horizontal axis. A prime is a particular stimulus manipulated by researchers in psycholinguistic experiments. Boroditsky then asked the subjects to answer a series of ‘true or false’ questions employing the temporal concepts EARLIER or LATER (for example, March comes earlier than April: true or false?). Boroditsky found that Mandarin speakers were faster in responding to questions involving the terms earlier and later when the prime related to the vertical axis. In contrast, English speakers were faster when the prime related to the horizontal axis. This remained the case even when both sets of subjects were carrying out the task in English. As Boroditsky puts it, ‘it appears that habits in language encourage habits in thought. Since Mandarin speakers showed vertical bias even when thinking for English, it appears that language-encouraged habits in thought can operate regardless of the language that one is currently thinking for’ (Boroditsky 2001: 12).

الاكثر قراءة في Linguistics fields
اخر الاخبار
اخبار العتبة العباسية المقدسة