Grammar
Tenses
Present
Present Simple
Present Continuous
Present Perfect
Present Perfect Continuous
Past
Past Simple
Past Continuous
Past Perfect
Past Perfect Continuous
Future
Future Simple
Future Continuous
Future Perfect
Future Perfect Continuous
Parts Of Speech
Nouns
Countable and uncountable nouns
Verbal nouns
Singular and Plural nouns
Proper nouns
Nouns gender
Nouns definition
Concrete nouns
Abstract nouns
Common nouns
Collective nouns
Definition Of Nouns
Verbs
Stative and dynamic verbs
Finite and nonfinite verbs
To be verbs
Transitive and intransitive verbs
Auxiliary verbs
Modal verbs
Regular and irregular verbs
Action verbs
Adverbs
Relative adverbs
Interrogative adverbs
Adverbs of time
Adverbs of place
Adverbs of reason
Adverbs of quantity
Adverbs of manner
Adverbs of frequency
Adverbs of affirmation
Adjectives
Quantitative adjective
Proper adjective
Possessive adjective
Numeral adjective
Interrogative adjective
Distributive adjective
Descriptive adjective
Demonstrative adjective
Pronouns
Subject pronoun
Relative pronoun
Reflexive pronoun
Reciprocal pronoun
Possessive pronoun
Personal pronoun
Interrogative pronoun
Indefinite pronoun
Emphatic pronoun
Distributive pronoun
Demonstrative pronoun
Pre Position
Preposition by function
Time preposition
Reason preposition
Possession preposition
Place preposition
Phrases preposition
Origin preposition
Measure preposition
Direction preposition
Contrast preposition
Agent preposition
Preposition by construction
Simple preposition
Phrase preposition
Double preposition
Compound preposition
Conjunctions
Subordinating conjunction
Correlative conjunction
Coordinating conjunction
Conjunctive adverbs
Interjections
Express calling interjection
Grammar Rules
Passive and Active
Preference
Requests and offers
wishes
Be used to
Some and any
Could have done
Describing people
Giving advices
Possession
Comparative and superlative
Giving Reason
Making Suggestions
Apologizing
Forming questions
Since and for
Directions
Obligation
Adverbials
invitation
Articles
Imaginary condition
Zero conditional
First conditional
Second conditional
Third conditional
Reported speech
Linguistics
Phonetics
Phonology
Linguistics fields
Syntax
Morphology
Semantics
pragmatics
History
Writing
Grammar
Phonetics and Phonology
Semiotics
Reading Comprehension
Elementary
Intermediate
Advanced
Teaching Methods
Teaching Strategies
Assessment
SPEECH PERCEPTION: PHONEME VARIATION
المؤلف:
John Field
المصدر:
Psycholinguistics
الجزء والصفحة:
P281
2025-10-14
38
SPEECH PERCEPTION: PHONEME VARIATION
It has proved difficult for listening researchers to account for our ability to identify the sounds of speech. This is because realisations of a given phoneme vary enormously.
Non-linearity. The spoken signal does not consist of a string of phonemes in the way that written language consists of a string of letters. In any token of the word [k æ t], there is no precise boundary for the sound /k/: co-articulation blends it into the succeeding / æ /, and the / æ / blends into the /t/.
Non-invariance. Co-articulation also means that there is no standard form for any given phoneme. The articulation of a vowel can range over a wide vowel space. Similarly, the place of articulation of a consonant such as /k/ varies greatly anticipating the vowel that is to follow it (compare /k/ in KILL with /k/ in CUT). Researchers have studied the cues that are physically present in the speech stream, but have failed to find any combination of features that uniquely serve to characterise a given consonant. They conclude that listeners recognise a consonant partly through the co-occurrence of several phonetic features (not always the same ones), but in particular through the shape of the formant transition which links a consonant to the following vowel.
Speaker variation. There is enormous between-speaker variation. Every speaker has a distinctive voice: our articulators (mouths, jaws, tongues, teeth) vary greatly in size, shape and position. Many speakers have regional accents. There are important differences in pitch between the voices of men and the voices of women and children. We speak at different rates with different degrees of emphasis and with different idiolectal features. Researchers are interested in how we manage to normalise (adjust) to the voice and speech rate and accent of a wide range of individuals– and what kind of representation we match our perceptions against. We continually make fine judgements based upon rate of articulation: our judgement of how rapidly the speaker is articulating may even influence which phoneme we hear.
Within-speaker variation. There is variation within the speech of a single speaker. For example, speech rate may vary enormously according to mood, auditor and communicative purpose, as may the degree of assimilation.
A number of theories have attempted to account for phoneme recognition. One approach has been to link speech perception with speech production. An early example is Motor Theory, based on the hypothesis that, in processing speech, we relate what we hear to our own experience of forming the same sounds. The theory faces problems in accounting for how we manage to interpret the speech of a speaker with a different regional accent, and how learners of a foreign language succeed in categorising sounds that they are not yet capable of making. A similar link between production and recognition is made in Stevens’ (1960) analysis-by-synthesis model. Here the assumption is that we identify (analyse) phonetic features in the input, then use our competence as speakers to synthesise them.
A second set of proposals suggests that, given its amorphous nature, the phoneme might not be a unit of processing at all. The idea is supported by evidence from illiterate Portuguese subjects who had difficulty in performing phoneme-based tasks; this suggests that phonemic awareness may be a product of literacy rather than vice versa. Some commentators have proposed a larger, more stable unit of processing such as the syllable. The assumption is that listeners match spoken input against a stored set of all the syllables of their language. However, a more efficient unit might be the demi-syllable (in the word cat, /k æ / and / æ t/) which would require fewer forms to be stored (the estimate for French is about 2000).
Alternatively, a direct match might be made between phonetic features in the signal and the stored representation of words in the mind, without needing to convert the features into phonemes. A phonetic feature detector would examine auditory values over a short time-slice, and would detect the presence or absence of particular features on the basis of the evidence available. This information could then be compared with entries in the lexicon, where the spoken word would be stored in the form of a cluster of features which distinguished it from all others. This is the basis of Stevens’ (1986) LAFF (Lexical Access from Features) model. In an alternative ‘direct’ model, Klatt’s (1986) LAFS (Lexical Access from Spectra), words are stored instead in the form of spectral patterns which represent the transitions between their phonemes.
A third set of solutions focuses upon phonological representation. Because phonemes (and indeed words) are so variable in connected speech, there is obviously no possibility of making an exact one-to-one match between the word form that we hear and a template in our mind. Whatever is stored therefore has to allow for variation. It might be that the phonological form of a word takes the form of an idealised prototype to which a sequence of sounds in the signal can be matched on the basis of an approximate fit. It might be that the stored form of the word is underspecified, consisting only of those features which are sufficient and necessary to identify it. Or it might be that we are capable of storing multiple exemplars of a particular word (all those that we have come across), thus enabling us to form a match between the form we hear and any one of a large number of stored variants.
A final, radical solution to the ‘non-invariance’ problem proposes that we do not package the signal into linguistic units at all but divide it up into equal sections determined by time. This is the approach adopted by the most well-known computer simulation of listening. TRACE, a connectionist model, processes the signal in small time-slices which are independent of phoneme, syllable and word boundaries. Each time-slice is connected to those that immediately precede it, so the processor can combine evidence from current input with evidence from what has immediately gone before. This enables TRACE to deal with the way in which phonemic features overlap in time due to co articulation. However, it faces the problem of adjusting to differences of speech rate between speakers.
See also: Normalisation, Phonological representation, Unit of perception
Further reading: Hawkins (1999); Nygaard and Pisoni (1995)
الاكثر قراءة في Linguistics fields
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
