1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الميكانيك :

Newton’s Third Law

المؤلف:   Richard Feynman, Robert Leighton and Matthew Sands

المصدر:  The Feynman Lectures on Physics

الجزء والصفحة:  Volume I, Chapter 10

2024-02-06

923

On the basis of Newton’s second law of motion, which gives the relation between the acceleration of any body and the force acting on it, any problem in mechanics can be solved in principle. For example, to determine the motion of a few particles, one can use the numerical method developed in the preceding chapter. But there are good reasons to make a further study of Newton’s laws. First, there are quite simple cases of motion which can be analyzed not only by numerical methods, but also by direct mathematical analysis. For example, although we know that the acceleration of a falling body is 32 ft/sec², and from this fact could calculate the motion by numerical methods, it is much easier and more satisfactory to analyze the motion and find the general solution, s=s0+v0t+16t2. In the same way, although we can work out the positions of a harmonic oscillator by numerical methods, it is also possible to show analytically that the general solution is a simple cosine function of t, and so it is unnecessary to go to all that arithmetical trouble when there is a simple and more accurate way to get the result. In the same manner, although the motion of one body around the sun, determined by gravitation, can be calculated point by point by the numerical methods, which show the general shape of the orbit, it is nice also to get the exact shape, which analysis reveals as a perfect ellipse.

Unfortunately, there are really very few problems which can be solved exactly by analysis. In the case of the harmonic oscillator, for example, if the spring force is not proportional to the displacement, but is something more complicated, one must fall back on the numerical method. Or if there are two bodies going around the sun, so that the total number of bodies is three, then analysis cannot produce a simple formula for the motion, and in practice the problem must be done numerically. That is the famous three-body problem, which so long challenged human powers of analysis; it is very interesting how long it took people to appreciate the fact that perhaps the powers of mathematical analysis were limited and it might be necessary to use the numerical methods. Today an enormous number of problems that cannot be done analytically are solved by numerical methods, and the old three-body problem, which was supposed to be so difficult, is solved as a matter of routine in exactly the same manner that was described in the preceding chapter, namely, by doing enough arithmetic. However, there are also situations where both methods fail: the simple problems we can do by analysis, and the moderately difficult problems by numerical, arithmetical methods, but the very complicated problems we cannot do by either method. A complicated problem is, for example, the collision of two automobiles, or even the motion of the molecules of a gas. There are countless particles in a cubic millimeter of gas, and it would be ridiculous to try to make calculations with so many variables (about 1017—a hundred million billion). Anything like the motion of the molecules or atoms of a gas or a block of iron, or the motion of the stars in a globular cluster, instead of just two or three planets going around the sun—such problems we cannot do directly, so we have to seek other means.

In the situations in which we cannot follow details, we need to know some general properties, that is, general theorems or principles which are consequences of Newton’s laws. One of these is the principle of conservation of energy. Another is the principle of conservation of momentum, the subject of this chapter. Another reason for studying mechanics further is that there are certain patterns of motion that are repeated in many different circumstances, so it is good to study these patterns in one particular circumstance. For example, we shall study collisions; different kinds of collisions have much in common. In the flow of fluids, it does not make much difference what the fluid is, the laws of the flow are similar. Other problems that we shall study are vibrations and oscillations and, in particular, the peculiar phenomena of mechanical waves—sound, vibrations of rods, and so on.

In our discussion of Newton’s laws it was explained that these laws are a kind of program that says “Pay attention to the forces,” and that Newton told us only two things about the nature of forces. In the case of gravitation, he gave us the complete law of the force. In the case of the very complicated forces between atoms, he was not aware of the right laws for the forces; however, he discovered one rule, one general property of forces, which is expressed in his Third Law, and that is the total knowledge that Newton had about the nature of forces—the law of gravitation and this principle, but no other details.

This principle is that action equals reaction.

What is meant is something of this kind: Suppose we have two small bodies, say particles, and suppose that the first one exerts a force on the second one, pushing it with a certain force. Then, simultaneously, according to Newton’s Third Law, the second particle will push on the first with an equal force, in the opposite direction; furthermore, these forces effectively act in the same line. This is the hypothesis, or law, that Newton proposed, and it seems to be quite accurate, though not exact (we shall discuss the errors later). For the moment we shall take it to be true that action equals reaction. Of course, if there is a third particle, not on the same line as the other two, the law does not mean that the total force on the first one is equal to the total force on the second, since the third particle, for instance, exerts its own push on each of the other two. The result is that the total effect on the first two is in some other direction, and the forces on the first two particles are, in general, neither equal nor opposite. However, the forces on each particle can be resolved into parts, there being one contribution or part due to each other interacting particle. Then each pair of particles has corresponding components of mutual interaction that are equal in magnitude and opposite in direction.

EN

تصفح الموقع بالشكل العمودي