x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graph Genus
المؤلف: Battle, J.; Harary, F.; and Kodama, Y
المصدر: "Every Plane Graph with Nine Points has a Nonplanar Complement." Bull. Amer. Math. Soc. 68
الجزء والصفحة: ...
24-4-2022
2204
The genus of a graph is the minimum number of handles that must be added to the plane to embed the graph without any crossings. A graph with genus 0 is embeddable in the plane and is said to be a planar graph. The names of graph classes having particular values for their genera are summarized in the following table (cf. West 2000, p. 266).
class | |
0 | planar graph |
1 | toroidal graph |
2 | double-toroidal graph |
3 | pretzel graph |
Every graph has a genus (White 2001, p. 53).
Let be a surface of genus . Then if for , then has in embedding in but not in for . Furthermore, embeds in for all , as can be seen by adding handles to an embedding of in (White 2001, p. 52).
The genus of a graph satisfies
(1) |
where is the edge count of (White 2001, p. 53).
The smallest double-toroidal graph has 9 vertices, and there are no pretzel graphs on eight or fewer vertices.
The genus of a disconnected graph is the sum of the genera of its connected components (Battle et al. 1962, White 2001, p. 55), and the genus of a connected graph is the sum of the genera of its blocks (Battle et al. 1962; White 2001, p. 55; Stahl 1978).
Duke and Haggard (1972; Harary et al. 1973) gave a criterion for the genus of all graphs on 8 and fewer vertices. Define the double-toroidal graphs
(2) |
|||
(3) |
|||
(4) |
where denotes minus the edges of . Then for any subgraph of :
1. if does not contain a Kuratowski graph (i.e., or ),
2. if contains a Kuratowski graph (i.e., is nonplanar) but does not contain any for ,
3. if contains any for .
The complete graph has genus
(5) |
for , where is the ceiling function (Ringel and Youngs 1968; Harary 1994, p. 118). The values for , 2, ... are 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, ... (OEIS A000933).
The complete bipartite graph has genus
(6) |
(Ringel 1965; Beineke and Harary 1965; Harary 1994, p. 119).
The hypercube has genus
(7) |
(Ringel 1955; Beineke and Harary 1965; Harary et al. 1988; Harary 1994, p. 119). The values for , 2, ... are 0, 0, 0, 1, 5, 17, 49, 129, ... (OEIS A000337).
Battle, J.; Harary, F.; and Kodama, Y. "Every Plane Graph with Nine Points has a Nonplanar Complement." Bull. Amer. Math. Soc. 68, 569-571, 1962
Battle, J.; Harary, F.; Kodama, Y.; and Youngs, J. W. T. "Additivity of the Genus of a Graph." Bull. Amer. Math. Soc. 68, 565-568, 1962.
Beineke, L. W. and Harary, F. "Inequalities Involving the Genus of a Graph and Its Thickness." Proc. Glasgow Math. Assoc. 7, 19-21, 1965.
Beineke, L. W. and Harary, F. "The Genus of the -Cube." Canad. J. Math. 17, 494-496, 1965.
Duke, R. A.; and Haggard, G. "The Genus of Subgraphs of ." Israel J. Math. 11, 452-455, 1972.
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
Harary, F.; Kainen, P. C.; Schwenk, A. J.; and White, A. T. "A Maximal Toroidal Graph Which Is Not a Triangulation." Math. Scand. 33, 108-112, 1973.
Harary, F. and Kodama, Y. "On the Genus of an -Connected Graph." Fund. Math. 54, 7-13, 1964.
Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 225, 1973.
Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.
Harary, F.; Hayes, J. P.; and Wu, H.-J. "A Survey of the Theory of Hypercube Graphs." Comput. Math. Appl. 15, 277-289, 1988.
Heawood, P. J. "Map Colour Theorems." Quart. J. Math. 24, 332-338, 1890.
Heffter, L. "Über das Problem der Nachbargebiete." Ann. Math. 38, 477-508, 1891.
Jungerman, M. and Ringel, G. "The Genus of the -Octahedron: Regular Cases." J. Graph Th. 2, 69-75, 1978.
Mayer, J. "Le problème des régions voisines sur les surfaces closes orientables." J. Combin. Th. 6, 177-195, 1969.
Ringel, G. Färbungsprobleme auf Flachen und Graphen. Berlin: Deutsche Verlag der Wissenschaften, 1962.
Ringel, G. "Das Geschlecht des vollständiger Paaren Graphen." Abh. Math. Sem. Univ. Hamburg 28, 139-150, 1965.
Ringel, G. "Über drei kombinatorische Probleme am -dimensionalen Würfel und Würfelgitter." Abh. Math. Sem. Univ. Hamburg 20, 10-19, 1955.
Ringel, G. and Youngs, J. W. T. "Solution of the Heawood Map-Coloring Problem." Proc. Nat. Acad. Sci. USA 60, 438-445, 1968.
Ringel, G. and Youngs, J. W. T. "Remarks on the Heawood Conjecture." In Proof Techniques in Graph Theory (Ed. F. Harary). New York: Academic Press, 1969.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 251, 1990.
Sloane, N. J. A. Sequences A000337/M3874 and A000933/M0503 in "The On-Line Encyclopedia of Integer Sequences."Stahl, S. "The Embedding of a Graph--A Survey." J. Graph Th. 2, 275-298, 1978.
West, D. B. "Surfaces of Higher Genus." Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 266-269, 2000.
White, A. T. "Imbedding Problems in Graph Theory." Ch. 6 in Graphs of Groups on Surfaces: Interactions and Models (Ed. A. T. White). Amsterdam, Netherlands: Elsevier, pp. 49-72, 2001.