Anisohedral Tiling					
				 
				
					
						
						 المؤلف:  
						Klee, V. and Wagon, S.					
					
						
						 المصدر:  
						Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						23-2-2022
					
					
						
						1286					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Anisohedral Tiling
A plane tiling is said to be isohedral if the symmetry group of the tiling acts transitively on the tiles, and 
-isohedral if the tiles fall into n orbits under the action of the symmetry group of the tiling. A 
-anisohedral tiling is a tiling which permits no 
-isohedral tiling with 
.

The numbers of anisohedral polyominoes with 
, 9, 10, ... are 1, 9, 44, 108, 222, ... (OEIS A075206), the first few of which are illustrated above (Myers).
REFERENCES
Berglund, J. "Is There a 
-Anisohedral Tile for 
?" Amer. Math. Monthly 100, 585-588, 1993.
Berglund, J. "Anisohedral Tilings Page." http://www.angelfire.com/mn3/anisohedral/.Grünbaum, B. and Shephard, G. C. §9.4 in Tilings and Patterns. New York: W. H. Freeman, 1986.
Klee, V. and Wagon, S. Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.
Myers, J. "Polyomino Tiling." http://www.srcf.ucam.org/~jsm28/tiling/.Sloane, N. J. A. Sequence A075206 in "The On-Line Encyclopedia of Integer Sequences."
				
				
					
					
					 الاكثر قراءة في  الرياضيات في العلوم الاخرى 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة