x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Logistic Equation
المؤلف: Wolfram, S
المصدر: A New Kind of Science. Champaign, IL: Wolfram Media
الجزء والصفحة: ...
21-12-2021
1649
The logistic equation (sometimes called the Verhulst model or logistic growth curve) is a model of population growth first published by Pierre Verhulst (1845, 1847). The model is continuous in time, but a modification of the continuous equation to a discrete quadratic recurrence equation known as the logistic map is also widely used.
The continuous version of the logistic model is described by the differential equation
(1) |
where is the Malthusian parameter (rate of maximum population growth) and is the so-called carrying capacity (i.e., the maximum sustainable population). Dividing both sides by and defining then gives the differential equation
(2) |
which is known as the logistic equation and has solution
(3) |
The function is sometimes known as the sigmoid function.
While is usually constrained to be positive, plots of the above solution are shown for various positive and negative values of and initial conditions ranging from 0.00 to 1.00 in steps of 0.05.
The discrete version of the logistic equation (3) is known as the logistic map.
The curve
(4) |
obtained from (3) is sometimes known as the logistic curve. Similarly, a normalized form of equation (3) is commonly used as a statistical distribution known as the logistic distribution.
REFERENCES:
Verhulst, P.-F. "Recherches mathématiques sur la loi d'accroissement de la population." Nouv. mém. de l'Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1-41, 1845.
Verhulst, P.-F. "Deuxième mémoire sur la loi d'accroissement de la population." Mém. de l'Academie Royale des Sci., des Lettres et des Beaux-Arts de Belgique 20, 1-32, 1847.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 918, 2002.