x

هدف البحث

بحث في العناوين

بحث في المحتوى

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

Quasi-Minimal Residual Method

المؤلف:  Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H.

المصدر:  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

الجزء والصفحة:  ...

1-12-2021

1101

Quasi-Minimal Residual Method

The biconjugate gradient method often displays rather irregular convergence behavior. Moreover, the implicit LU decomposition of the reduced tridiagonal system may not exist, resulting in a breakdown of the algorithm. The quasi-minimal residual method (Freund and Nachtigal 1991) is a related algorithm that attempts to overcome these problems.

The main idea behind the quasi-minimal residual (QMR) method algorithm is to solve the reduced tridiagonal system in a least squares sense, similar to the approach followed in the generalized minimal residual method (GMRES). Since the constructed basis for the Krylov subspace is biorthogonal, rather than orthogonal as in GMRES, the obtained solution is viewed as a quasi-minimal residual solution, which explains the name. Additionally, QMR uses look-ahead techniques to avoid breakdowns in the underlying Lanczos process, which makes it more robust than the biconjugate gradient method.

The convergence behavior of QMR is typically much smoother than for the biconjugate gradient method (BCG). Freund and Nachtigal (1991) present quite general error bounds which show that QMR may be expected to converge about as fast as the generalized minimal residual method. From a relation between the residuals in BCG and QMR (Freund and Nachtigal 1991, relation 5.10) one may deduce that at phases in the iteration process where BCG makes significant progress, QMR has arrived at about the same approximation for x^^. On the other hand, when BCG makes no progress at all, QMR may still show slow convergence.

The look-ahead steps in this version of the QMR method prevent breakdown in all cases except the so-called "incurable breakdown," where no practical number of look-ahead steps would yield a next iterate.

The pseudocode for the preconditioned quasi-minimal residual method with preconditioner M=M_1M_2 is given above. This algorithm follows the two term recurrence version without look-ahead (Freund and Nachtigal 1994, Algorithm 7.1). This version of QMR is simpler to implement than the full QMR method with look-ahead, but it is susceptible to breakdown of the underlying Lanczos process. (Other implementation variations are whether to scale Lanczos vectors or not, or to use three-term recurrences instead of coupled two-term recurrences. Such decisions usually have implications for the stability and the efficiency of the algorithm.)

Computation of the residual is done for the convergence test. If one uses right (or post) preconditioning, that is M_1=I, then a cheap upper bound for |r^((i))| can be computed in each iteration, avoiding the recursions for r^((i)) (Freund and Nachtigal 1991, Proposition 4.1). This upper bound may be pessimistic by a factor of at most sqrt(i+1).

QMR has roughly the same problems with respect to vector and parallel implementation as the biconjugate gradient method. The scalar overhead per iteration is slightly more than for BCG. In all cases where the slightly cheaper BCG method converges irregularly (but fast enough), QMR may be preferred for stability reasons.


REFERENCES:

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

Freund, R. and Nachtigal, N. "QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems." Numer. Math. 60, 315-339, 1991.

Freund, R. and Nachtigal, N. "An Implementation of the QMR Method Based on Coupled Two-Term Recurrences." SIAM J. Sci. Statist. Comput. 15, 313-337, 1994.

 شعار المرجع الالكتروني للمعلوماتية




البريد الألكتروني :
info@almerja.com
الدعم الفني :
9647733339172+