1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

النهايات من الطرف الواحد : ONE – SIDED LIMITS

المؤلف:  د.لحسن عبدالله باشيوة

المصدر:  الرياضيات الاساسية وتطبيقاتها

الجزء والصفحة:  88-91

4-11-2021

1820

النهايات من الطرف الواحد :  ONE – SIDED LIMITS

نقول عن الدالة f(x) إنها تقبل نهاية من اليمين (Right - Hand) عند النقطة       x = a إذا كان :

                                

ونقول عن الدالة f(x) إنها تقبل نهاية من الشمال (اليسار) (Left - Hand) عند النقطة x = a إذا كان : .

ونقول عن الدالة f(x) أنها تقبل نهاية عند النقطة x = a إذا كان :

 

 

شكل (1-1)

 

مثال (1) : أوجد النهاية من الجهة اليسرى ، للدالة f(x) التالية إن وجدت:

                                              

الحل:

ببساطة يمكن حساب نهاية الدالة اليسرى، ومن خلال الأسلوب المبشر وذلك :

 

مثال (2) : أوجد النهاية من الجهة اليمنى للدالة f(x) الثانية إن وجدت :

                                    

الحل :

ببساطة يمكن حساب نهاية الدالة اليمنى ، ومن خلال الأسلوب المباشر وذلك :

                                  

 

مثال (3) : لتكن لدينا الدالة f(x) المعرفة كما يلي:

                                                        

 

المطلوب : مثل منحنى الدالة f(x) . ثم اثبت أن النهاية من الجهة اليسرى وأن غير موجدة للدالة f(x).

الحل :

منحنى الدالة f(x) هو كما موضح في التمثيل البياني التالي:

شكل (2-1)

 

 

مثال (4) : أوجد النهاية التالية

:   

 

الحل :

يلاحظ أننا في حالة عدم التعيين من النوع 0/0. ولأجل التخلص منها نستخرج العامل المشترك مع المقام ، ونقوم بعمليات الاختصار ثم الحساب البسيط كمايلي:

                          

 

مثال (5) : أوجد النهاية التالية  :

                                        

الحل :

يلاحظ أننا في حالة عدم التعيين من النوع 0/0 . وجل التخلص منها نستخرج قيمة الدالة عند المقام ونقوم بعمليات الاختصار ثم الحساب البسيط كما يلي:

مثال (6) : لتكن لدينا الدالة

أوجد مجموعة تعريف الدالة dom (f) ، ثم أوجد النهاية عند x = 1? : ، x = 1?، وأوجد النهاية عند أحد الأطراف لكل حالة.

الحل :

ببساطة يمكن ملاحظة ان الدالة معرفة إذا كان : وعليه فإن مجموعة مجال التعريف معرفة كما يلي: . وفيما يخص النهاية في الحالتين فهي غير موجودة ، ولأجل التوضيح نحسب النهاية في أحد الأطراف لكل حالة:

                                     

 

 

EN

تصفح الموقع بالشكل العمودي