

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Probability
المؤلف:
Evans, M.; Hastings, N.; and Peacock, B
المصدر:
Statistical Distributions, 3rd ed. New York: Wiley, 2000.
الجزء والصفحة:
...
14-3-2021
1750
Probability
Probability is the branch of mathematics that studies the possible outcomes of given events together with the outcomes' relative likelihoods and distributions. In common usage, the word "probability" is used to mean the chance that a particular event (or set of events) will occur expressed on a linear scale from 0 (impossibility) to 1 (certainty), also expressed as a percentage between 0 and 100%. The analysis of events governed by probability is called statistics.
There are several competing interpretations of the actual "meaning" of probabilities. Frequentists view probability simply as a measure of the frequency of outcomes (the more conventional interpretation), while Bayesians treat probability more subjectively as a statistical procedure that endeavors to estimate parameters of an underlying distribution based on the observed distribution.
A properly normalized function that assigns a probability "density" to each possible outcome within some interval is called a probability density function (or probability distribution function), and its cumulative value (integral for a continuous distribution or sum for a discrete distribution) is called a distribution function (or cumulative distribution function).
A variate is defined as the set of all random variables that obey a given probabilistic law. It is common practice to denote a variate with a capital letter (most commonly
). The set of all values that
can take is then called the range, denoted
(Evans et al. 2000, p. 5). Specific elements in the range of
are called quantiles and denoted
, and the probability that a variate
assumes the element
is denoted
.
Probabilities are defined to obey certain assumptions, called the probability axioms. Let a sample space contain the union (
) of all possible events
, so
![]() |
(1) |
and let
and
denote subsets of
. Further, let
be the complement of
, so that
![]() |
(2) |
Then the set
can be written as
![]() |
(3) |
where
denotes the intersection. Then
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
where
is the empty set.
Let
denote the conditional probability of
given that
has already occurred, then
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
The relationship
![]() |
(15) |
holds if
and
are independent events. A very important result states that
![]() |
(16) |
which can be generalized to
![]() |
(17) |
REFERENCES:
Evans, M.; Hastings, N.; and Peacock, B. Statistical Distributions, 3rd ed. New York: Wiley, 2000.
Everitt, B. Chance Rules: An Informal Guide to Probability, Risk, and Statistics. Copernicus, 1999.
Goldberg, S. Probability: An Introduction. New York: Dover, 1986.
Keynes, J. M. A Treatise on Probability. London: Macmillan, 1921.
Mises, R. von Mathematical Theory of Probability and Statistics. New York: Academic Press, 1964.
Mises, R. von Probability, Statistics, and Truth, 2nd rev. English ed. New York: Dover, 1981.
Mosteller, F. Fifty Challenging Problems in Probability with Solutions. New York: Dover, 1987.
Mosteller, F.; Rourke, R. E. K.; and Thomas, G. B. Probability: A First Course, 2nd ed. Reading, MA: Addison-Wesley, 1970.
Nahin, P. J. Duelling Idiots and Other Probability Puzzlers. Princeton, NJ: Princeton University Press, 2000.
Neyman, J. First Course in Probability and Statistics. New York: Holt, 1950.
Rényi, A. Foundations of Probability. San Francisco, CA: Holden-Day, 1970.
Ross, S. M. A First Course in Probability, 5th ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.
Ross, S. M. Introduction to Probability and Statistics for Engineers and Scientists. New York: Wiley, 1987.
Ross, S. M. Applied Probability Models with Optimization Applications. New York: Dover, 1992.
Ross, S. M. Introduction to Probability Models, 6th ed. New York: Academic Press, 1997.
Székely, G. J. Paradoxes in Probability Theory and Mathematical Statistics, rev. ed. Dordrecht, Netherlands: Reidel, 1986.
Todhunter, I. A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace. New York: Chelsea, 1949.
Weaver, W. Lady Luck: The Theory of Probability. New York: Dover, 1963.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية








































قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)