1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الحديثة : الليزر : مواضيع عامة في الليزر :

Thermal Management

المؤلف:  Walter Koechner, Michael Bass

المصدر:  Solid-State Lasers

الجزء والصفحة:  212

20-1-2021

1062

Thermal Management

Diode-array pumping offers dramatic improvements in efficiency of solid-state laser systems. However, the need to maintain the operating temperature within a relatively narrow range requires a more elaborate thermal management system as compared to flashlamp-pumped lasers.
In end-pumped systems, the diode wavelength is usually temperature tuned to the peak absorption line of the laser and maintained at that wavelength by controlling the array temperature with a thermoelectric cooler. This approach works well for small lasers, and systems including thermoelectric coolers can work over a large range of ambient temperatures.
In large systems, the power consumption of thermoelectric coolers is usually prohibitive. For these systems, a liquid cooling loop with a refrigeration stage can be employed that maintains the temperature of the coolant independent of the environment. However, the coefficient of performance for refrigerators is typically no greater than one. Therefore, the electrical input power requirement is equal to the heat load to be controlled.
Recently, the development of diode arrays which can operate at high junction temperatures has eliminated the need for refrigerated cooling loops for special cases such as military systems. Diode arrays have been operated at junction temperatures as high as 75C, which is higher than ambient in most situations. A simple liquid-to-air cooling system provides the most efficient thermal control system for the laser because only the power consumption of a pump and possibly a fan is added to the total electrical requirements.
The power dissipation of the various subsystems of a pulsed diode-pumped laser is listed in Table 1. The system has a repetition rate of 200 Hz and an output pulse energy of 0.8 J/pulse. By far the greatest heat dissipation occurs in the diode pump arrays, and accounts for approximately 65% of the system input power. The solid-state laser medium itself dissipates heat at a rate approximately equal to the output power from the laser system. The electronics dissipate on the order of 19% of the input power.

TABLE 1. Power dissipation from a diode-array-pumped solid-state laser.

EN

تصفح الموقع بالشكل العمودي