1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Tangent Number

المؤلف:  Borwein, J. and Bailey, D.

المصدر:  Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

الجزء والصفحة:  ...

7-11-2020

677

Tangent Number

The tangent numbers, also called a zag number, and given by

 T_n=(2^(2n)(2^(2n)-1)|B_(2n)|)/(2n),

(1)

where B_n is a Bernoulli number, are numbers that can be defined either in terms of a generating function given as the Maclaurin series of tanx or as the numbers of alternating permutations on n=1, 3, 5, 7, ... symbols (where permutations that are the reverses of one another counted as equivalent). The first few T_n for n=1, 2, ... are 1, 2, 16, 272, 7936, ... (OEIS A000182).

For example, the reversal-nonequivalent alternating permutations on n=1 and 3 numbers are {1}, and {1,3,2}{2,1,3}, respectively.

The tangent numbers have the generating function

tanx = sum_(k=0)^(infty)((-1)^(k-1)2^(2k)(2^(2k)-1)B_(2k))/((2k)!)x^(2k-1)

(2)

= sum_(k=1)^(infty)(T_k)/((2k-1)!)x^(2k-1)

(3)

= x+1/3x^3+2/(15)x^5+(17)/(315)x^7+....

(4)

Shanks (1967) defines a generalization of the tangent numbers by

 d_(a,n)=((2n-1)!L_(-a)(2n+1))/(sqrt(a))((2a)/pi)^(2n),

(5)

where L_n(s) is a Dirichlet L-series, giving the special case

 d_(1,n)=T_n.

(6)

The following table gives the first few values of d_(a,n) for n=1, 2, ....

a OEIS d_(a,n)
1 A000182 1, 2, 16, 272, 7936, ...
2 A000464 1, 11, 361, 24611, ...
3 A000191 2, 46, 3362, 515086, ...
4 A000318 4, 128, 16384, 4456448, ...
5 A000320 4, 272, 55744, 23750912, ...
6 A000411 6, 522, 152166, 93241002, ...
7 A064072 8, 904, 355688, 296327464, ...
8 A064073 8, 1408, 739328, 806453248, ...
9 A064074 12, 2160, 1415232, 1951153920, ...
10 A064075 14, 3154, 2529614, 4300685074, ...

REFERENCES:

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Knuth, D. E. and Buckholtz, T. J. "Computation of Tangent, Euler, and Bernoulli Numbers." Math. Comput. 21, 663-688, 1967.

Shanks, D. "Generalized Euler and Class Numbers." Math. Comput. 21, 689-694, 1967.

Shanks, D. Corrigendum to "Generalized Euler and Class Numbers." Math. Comput. 22, 699, 1968.

Sloane, N. J. A. Sequence A000182/M2096 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي