x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Harmonic Number
المؤلف: Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H
المصدر: Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
الجزء والصفحة: ...
23-9-2020
1974
A harmonic number is a number of the form
(1) |
arising from truncation of the harmonic series. A harmonic number can be expressed analytically as
(2) |
where is the Euler-Mascheroni constant and is the digamma function.
The first few harmonic numbers are 1, , , , , ... (OEIS A001008 and A002805). The numbers of digits in the numerator of for , 1, ... are 1, 4, 41, 434, 4346, 43451, 434111, 4342303, 43428680, ... (OEIS A114467), with the corresponding number of digits in the denominator given by 1, 4, 40, 433, 4345, 43450, 434110, 4342302, 43428678, ... (OEIS A114468). These digits converge to what appears to be the decimal digits of (OEIS A002285).
The first few indices such that the numerator of is prime are given by 2, 3, 5, 8, 9, 21, 26, 41, 56, 62, 69, ... (OEIS A056903). The search for prime numerators has been completed up to by E. W. Weisstein (May 13, 2009), and the following table summarizes the largest known values.
decimal digits | discoverer | |
63942 | 27795 | E. W. Weisstein (Feb. 14, 2007) |
69294 | 30067 | E. W. Weisstein (Feb. 1, 2008) |
69927 | 30301 | E. W. Weisstein (Mar. 11, 2008) |
77449 | 33616 | E. W. Weisstein (Apr. 4, 2009) |
78128 | 33928 | E. W. Weisstein (Apr. 9, 2009) |
78993 | 34296 | E. W. Weisstein (Apr. 17, 2009) |
81658 | 35479 | E. W. Weisstein (May. 12, 2009) |
The denominators of appear never to be prime except for the case . Furthermore, the denominator is never a prime power (except for this case) since the denominator is always divisible by the largest power of 2 less than or equal to , and also by any prime with .
The harmonic numbers are implemented as HarmonicNumber[n].
The values of such that equals or exceeds 1, 2, 3, ... are given by 1, 4, 11, 31, 83, 227, 616, 1674, ... (OEIS A004080). Another interesting sequence is the number of terms in the simple continued fraction of for , 1, 2, ..., given by 1, 8, 68, 834, 8356, 84548, 841817, 8425934, 84277586, ... (OEIS A091590), which is conjectured to approach (OEIS A089729).
The definition of harmonic numbers can also be extended to the complex plane, as illustrated above.
Based on their definition, harmonic numbers satisfy the obvious recurrence equation
(3) |
with .
The number formed by taking alternate signs in the sum also has an explicit analytic form
(4) |
|||
(5) |
|||
(6) |
has the particularly beautiful form
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
The harmonic number is never an integer except for , which can be proved by using the strong triangle inequality to show that the 2-adic value of is greater than 1 for . This result was proved in 1915 by Taeisinger, and the more general results that any number of consecutive terms not necessarily starting with 1 never sum to an integer was proved by Kűrschák in 1918 (Hoffman 1998, p. 157).
The harmonic numbers have odd numerators and even denominators. The th harmonic number is given asymptotically by
(13) |
where is the Euler-Mascheroni constant (Conway and Guy 1996; Havil 2003, pp. 79 and 89), where the general th term is , giving , 120, , 240, ... for , 2, ... (OEIS A006953). This formula is a special case of an Euler-Maclaurin integration formulas (Havil 2003, p. 79).
Inequalities bounding include
(14) |
(Young 1991; Havil 2003, pp. 73-75) and
(15) |
(DeTemple 1991; Havil 2003, pp. 76-78).
An interesting analytic sum is given by
(16) |
(Coffman 1987). Borwein and Borwein (1995) show that
(17) |
|||
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
where is the Riemann zeta function. The first of these had been previously derived by de Doelder (1991), and the third by Goldbach in a 1742 letter to Euler (Borwein and Bailey 2003, pp. 99-100; Bailey et al. 2007, p. 256). These identities are corollaries of the identity
(22) |
(Borwein and Borwein 1995). Additional identities due to Euler are
(23) |
|||
(24) |
for , 3, ... (Borwein and Borwein 1995), where is Apéry's constant. These sums are related to so-called Euler sums.
A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006) is
(25) |
where is a Pochhammer symbol.
Gosper gave the interesting identity
(26) |
|||
(27) |
where is the incomplete gamma function and is the Euler-Mascheroni constant.
G. Huvent (2002) found the beautiful formula
(28) |
A beautiful double series is given by
(29) |
(Bailey et al. 2007, pp. 273-274). Another double sum is
(30) |
for (Sondow 2003, 2005).
There is an unexpected connection between the harmonic numbers and the Riemann hypothesis.
Generalized harmonic numbers in power can be defined by the relationship
(31) |
where
(32) |
These number are implemented as HarmonicNumber[n, r]. The numerators of the special case are known as Wolstenholme numbers.
B. Cloitre (pers. comm., ) gave the surprising identity
(33) |
which relates to an indefinite version of a famous series for .
For odd , these have the explicit form
(34) |
where is the polygamma function, is the gamma function, and is the Riemann zeta function.
The 2-index harmonic numbers satisfy the identity
(35) |
(P. Simon, pers. comm., Aug. 30, 2004).
Sums of the generalized harmonic numbers include
(36) |
for , where is a polylogarithm,
(37) |
|||
(38) |
|||
(39) |
|||
(40) |
|||
(41) |
|||
(42) |
where equations (37), (38), (39), and (41) are due to B. Cloitre (pers. comm., Oct. 4, 2004) and is a dilogarithm. In general,
(43) |
(P. Simone, pers. comm. June 2, 2003). The power harmonic numbers also obey the unexpected identity
(44) |
(M. Trott, pers. comm.).
P. Simone (pers. comm., Aug. 30, 2004) showed that
(45) |
where
(46) |
|||
(47) |
|||
(48) |
|||
(49) |
This gives the special results
(50) |
for , respectively.
Conway and Guy (1996) define the second-order harmonic number by
(51) |
|||
(52) |
|||
(53) |
the third-order harmonic number by
(54) |
and the th-order harmonic number by
(55) |
A slightly different definition of a two-index harmonic number is given by Roman (1992) in connection with the harmonic logarithm. Roman (1992) defines this by
(56) |
|||
(57) |
plus the recurrence relation
(58) |
For general and , this is equivalent to
(59) |
and for , it simplifies to
(60) |
For , the harmonic number can be written
(61) |
where is the Roman factorial and is a Stirling number of the first kind.
A separate type of number sometimes also called a "harmonic number" is a harmonic divisor number (or Ore number).
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Borwein, D. and Borwein, J. M. "On an Intriguing Integral and Some Series Related to ." Proc. Amer. Math. Soc. 123, 1191-1198, 1995.
Coffman, S. W. "Problem 1240 and Solution: An Infinite Series with Harmonic Numbers." Math. Mag. 60, pp. 118-119, 1987.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 143 and 258-259, 1996.
de Doelder, P. J. "On Some Series Containing and for Certain Values of and ." J. Comp. Appl. Math. 37, 125-141, 1991.
DeTemple, D. W. "The Non-Integer Property of Sums of Reciprocals of Consecutive Integers." Math. Gaz. 75, 193-194, 1991.
Flajolet, P. and Salvy, B. "Euler Sums and Contour Integral Representation." Experim. Math. 7, 15-35, 1998.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Harmonic Numbers" and "Harmonic Summation." §6.3 and 6.4 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 272-282, 1994.
Gosper, R. W. "harmonic Summation and exponential gfs." math-fun@cs.arizona.edu posting, Aug. 2, 1996.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.
Huvent, G. "Autour de la primitive de ." Feb. 3, 2002. https://perso.orange.fr/gery.huvent/articlespdf/Autour_primitive.pdf.
Roman, S. "The Logarithmic Binomial Formula." Amer. Math. Monthly 99, 641-648, 1992.
Roman, S. The Umbral Calculus. New York: Academic Press, p. 99, 1984.
Savio, D. Y.; Lamagna, E. A.; and Liu, S.-M. "Summation of Harmonic Numbers." In Computers and Mathematics (Ed. E. Kaltofen and S. M. Watt). New York: Springer-Verlag, pp. 12-20, 1989.
Sloane, N. J. A. Sequences A001008/M2885, A002285/M3210, A002805/M1589, A004080, A006953/M2039, A056903, A082912, A089729, A091590, A096618, A114467, and A114468 in "The On-Line Encyclopedia of Integer Sequences."
Sondow, J. "Criteria for Irrationality of Euler's Constant." Proc. Amer. Math. Soc. 131, 3335-3344, 2003.
Sondow, J. "Problem 11026: An Identity Involving Harmonic Numbers." Amer. Math. Monthly 112, 367-369, 2005.
Trott, M. "The Mathematica Guidebooks Additional Material: Harmonic Numbers Inversion." https://www.mathematicaguidebooks.org/additions.shtml#S_3_06.
Young, R. M. "Euler's Constant." Math. Gaz. 75, 187-190, 1991.