1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Mordell Curve

المؤلف:  Apostol, T. M

المصدر:  Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.

الجزء والصفحة:  ...

10-7-2020

1125

Mordell Curve

An elliptic curve of the form y^2=x^3+n for n an integer. This equation has a finite number of solutions in integers for all nonzero n. If (x,y) is a solution, it therefore follows that (x,-y) is as well.

MordellCurve

Uspensky and Heaslet (1939) give elementary solutions for n=-4-2, and 2, and then give n=-1-5-6, and 1 as exercises. Euler found that the only integer solutions to the particular case n=1 (a special case of Catalan's conjecture) are (x,y)=(-1,0)(0,+/-1), and (2,+/-3). This can be proved using Skolem's method, using the Thue equation x^3-2y^3=+/-1, using 2-descent to show that the elliptic curve has rank 0, and so on. It is given as exercise 6b in Uspensky and Heaslet (1939, p. 413), and proofs published by Wakulicz (1957), Mordell (1969, p. 126), Sierpiński and Schinzel (1988, pp. 75-80), and Metsaenkylae (2003).

Solutions of the Mordell curve with 0<y<10^5 are summarized in the table below for small n.

n solutions
1 (-1,0),(0,1),(2,3)
2 (-1,1)
3 (1,2)
4 (0,2)
5 (-1,2)
6 none
7 none
8 (-2,0),(1,3),(2,4),(46,312)
9 (-2,1),(0,3),(3,6),(6,15),(40,253)
10 (-1,3)

Values of n such that the Mordell curve has no integer solutions are given by 6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, ... (OEIS A054504; Apostol 1976, p. 192).


REFERENCES:

Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.

Cohen, H. "y^2=x^3+1." 24 Nov 2003. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0311&L=nmbrthry&F=&S=&P=1197.

Conrad, M. Untitled. https://emmy.math.uni-sb.de/~simath/MORDELL/MORDELL+.

Gebel, J. "Data on Mordell's Curve." https://tnt.math.metro-u.ac.jp/simath/MORDELL/.

Gebel, J.; Pethő, A.; and Zimmer, H. G. "On Mordell's Equation." Compos. Math. 110, 335-367, 1998.

Llorente, P. and Quer, J. "On the 3-Sylow Subgroup of the Class Group of Quadratic Fields." Math. Comput. 50, 321-333, 1988.

Mestre, J.-F. "Rang de courbes elliptiques d'invariant donné." C.R. Acad. Sci. Paris 314, 919-922, 1992.

Mestre, J.-F. "Rang de courbes elliptiques d'invariant nul." C.R. Acad. Sci. Paris 321, 1235-1236, 1995.

Metsaenkylae, T. "Catalan's Conjecture: Another Old Diophantine Problem Solved." Bull. Amer. Math. Soc. S 0273-0979(03)00993-5, September 5, 2003.

Mordell, L. J. Diophantine Equations. London: Academic Press, 1969.

Myerson, G. "Re: y^2=x^3+1." 24 Nov 2003. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0311&L=nmbrthry&F=&S=&P=1290.

Quer, J. "Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12." C.R. Acad. Sci. Paris. Sér. 1 Math. 305, 215-218, 1987.

Sierpiński, W. and Schinzel, A. Elementary Theory of Numbers, 2nd Eng. ed. Amsterdam, Netherlands: North-Holland, 1988.

Sloane, N. J. A. Sequence A054504 in "The On-Line Encyclopedia of Integer Sequences."

Szymiczek, K. "Re: y^2=x^3+1." 26 Nov 2003. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0311&L=nmbrthry&F=&S=&P=1492.

Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939.

Wakulicz, A. "On the Equation x^3+y^3=2z^3." Colloq. Math. 5, 11-15, 1957.

Womack, T. "Minimal-Known Positive and Negative k for Mordell Curves of Given Rank." https://www.maths.nott.ac.uk/personal/pmxtow/mordellc.htm.

EN

تصفح الموقع بالشكل العمودي