1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Relatively Prime

المؤلف:  Borwein, J. and Bailey, D.

المصدر:  Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

الجزء والصفحة:  ...

30-6-2020

1952

Relatively Prime

  Relatively prime plots

Two integers are relatively prime if they share no common positive factors (divisors) except 1. Using the notation (m,n) to denote the greatest common divisor, two integers m and n are relatively prime if (m,n)=1. Relatively prime integers are sometimes also called strangers or coprime and are denoted m_|_n. The plot above plots m and n along the two axes and colors a square black if (m,n)=1 and white otherwise (left figure) and simply colored according to (m,n) (right figure).

Two numbers can be tested to see if they are relatively prime in the Wolfram Language using CoprimeQ[mn].

Two distinct primes p and q are always relatively prime, (p,q)=1, as are any positive integer powers of distinct primes p and q(p^m,q^n)=1.

Relative primality is not transitive. For example, (2,3)=1 and (3,4)=1, but (2,4)=2.

The probability that two integers m and n picked at random are relatively prime is

 P((m,n)=1)=[zeta(2)]^(-1)=6/(pi^2)=0.60792...

(1)

(OEIS A059956; Cesàro and Sylvester 1883; Lehmer 1900; Sylvester 1909; Nymann 1972; Wells 1986, p. 28; Borwein and Bailey 2003, p. 139; Havil 2003, pp. 40 and 65; Moree 2005), where zeta(z) is the Riemann zeta function. This result is related to the fact that the greatest common divisor of m and n(m,n)=k, can be interpreted as the number of lattice points in the plane which lie on the straight line connecting the vectors (0,0) and (m,n) (excluding (m,n) itself). In fact, 6/pi^2 is the fractional number of lattice points visible from the origin (Castellanos 1988, pp. 155-156).

Given three integers (k,m,n) chosen at random, the probability that no common factor will divide them all is

 P((k,m,n)=1)=[zeta(3)]^(-1)=0.83190...

(2)

(OEIS A088453; Wells 1986, p. 29), where zeta(3) is Apéry's constant (Wells 1986, p. 29). In general, the probability that n random numbers lack a pth power common divisor is [zeta(np)]^(-1) (Cohen 1959, Salamin 1972, Nymann 1975, Schoenfeld 1976, Porubský 1981, Chidambaraswamy and Sitaramachandra Rao 1987, Hafner et al. 1993).

Interestingly, the probability that two Gaussian integers a and b are relatively prime is

 P_(Gaussian)((a,b)=1)=6/(pi^2K)=0.66370...

(3)

(OEIS A088454), where K is Catalan's constant (Pegg; Collins and Johnson 1989; Finch 2003, p. 601).

Similarly, the probability that two random Eisenstein integers are relatively prime is

 P_(Eisenstein)((a,b)=1)=6/(pi^2H)=0.77809...

(4)

(OEIS A088467), where

 H=sum_(k=0)^infty[1/((3k+1)^2)-1/((3k+2)^2)]

(5)

(Finch 2003, p. 601), which can be written analytically as

H = 1/9[psi_1(1/3)-psi_1(2/3)]

(6)

= 0.78130...

(7)

(OEIS A086724), where psi_1(z) is the trigamma function

Amazingly, the probabilities for random pairs of integers and Gaussian integers being relatively prime are the same as the asymptotic densities of squarefree integers of these types.


REFERENCES:

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Castellanos, D. "The Ubiquitous Pi." Math. Mag. 61, 67-98, 1988.

Chidambaraswamy, J. and Sitaramachandra Rao, R. "On the Probability That the Values of M Polynomials Have a Given G.C.D." J. Number Th. 26, 237-245, 1987.

Cohen, E. "Arithmetical Functions Associated with Arbitrary Sets of Integers." Acta Arith. 5, 407-415, 1959.

Collins, G. E. and Johnson, J. R. "The Probability of Relative Primality of Gaussian Integers." Proc. 1988 Internat. Sympos. Symbolic and Algebraic Computation (ISAAC), Rome (Ed. P. Gianni). New York: Springer-Verlag, pp. 252-258, 1989.

Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 3-4, 1994.

Hafner, J. L.; Sarnak, P.; and McCurley, K. "Relatively Prime Values of Polynomials." In A Tribute to Emil Grosswald: Number Theory and Related Analysis (Ed. M. Knopp and M. Seingorn). Providence, RI: Amer. Math. Soc., 1993.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 38-39, 1998.

Lehmer, D. N. "An Asymptotic Evaluation of Certain Totient Sums." Amer. J. Math. 22, 293-355, 1900.

Moree, P. "Counting Carefree Couples." 30 Sep 2005. https://arxiv.org/abs/math.NT/0510003.

Nagell, T. "Relatively Prime Numbers. Euler's phi-Function." §8 in Introduction to Number Theory. New York: Wiley, pp. 23-26, 1951.

Nymann, J. E. "On the Probability That k Positive Integers Are Relatively Prime." J. Number Th. 4, 469-473, 1972.

Nymann, J. E. "On the Probability That k Positive Integers Are Relatively Prime. II." J. Number Th. 7, 406-412, 1975.

Pegg, E. Jr. "The Neglected Gaussian Integers." https://www.mathpuzzle.com/Gaussians.html.

Porubský, S. "On the Probability That K Generalized Integers Are Relatively H-Prime." Colloq. Math. 45, 91-99, 1981.

Salamin, E. Item 53 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 22, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item53.

Schoenfeld, L. "Sharper Bounds for the Chebyshev Functions theta(x) and psi(x), II." Math. Comput. 30, 337-360, 1976.

Sloane, N. J. A. Sequences A059956, A086724, A088453, A088454, and A088467 in "The On-Line Encyclopedia of Integer Sequences."

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 28-29, 1986.

EN

تصفح الموقع بالشكل العمودي