تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Totient Function
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"The Euler Totient Function." §24.3.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
25-3-2020
1087
The totient function , also called Euler's totient function, is defined as the number of positive integers
that are relatively prime to (i.e., do not contain any factor in common with)
, where 1 is counted as being relatively prime to all numbers. Since a number less than or equal to and relatively prime to a given number is called a totative, the totient function
can be simply defined as the number of totatives of
. For example, there are eight totatives of 24 (1, 5, 7, 11, 13, 17, 19, and 23), so
.
The totient function is implemented in the Wolfram Language as EulerPhi[n].
The number is called the cototient of
and gives the number of positive integers
that have at least one prime factor in common with
.
is always even for
. By convention,
, although the Wolfram Language defines EulerPhi[0] equal to 0 for consistency with its FactorInteger[0] command. The first few values of
for
, 2, ... are 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, ... (OEIS A000010). The totient function is given by the Möbius transform of 1, 2, 3, 4, ... (Sloane and Plouffe 1995, p. 22).
is plotted above for small
.
For a prime ,
![]() |
(1) |
since all numbers less than are relatively prime to
. If
is a power of a prime, then the numbers that have a common factor with
are the multiples of
:
,
, ...,
. There are
of these multiples, so the number of factors relatively prime to
is
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Now take a general divisible by
. Let
be the number of positive integers
not divisible by
. As before,
,
, ...,
have common factors, so
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Now let be some other prime dividing
. The integers divisible by
are
,
, ...,
. But these duplicate
,
, ...,
. So the number of terms that must be subtracted from
to obtain
is
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
and
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
By induction, the general case is then
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where the product runs over all primes dividing
. An interesting identity relating
to
is given by
![]() |
(14) |
(A. Olofsson, pers. comm., Dec. 30, 2004).
Another identity relates the divisors of
to
via
![]() |
(15) |
The totient function is connected to the Möbius function through the sum
![]() |
(16) |
where the sum is over the divisors of , which can be proven by induction on
and the fact that
and
are multiplicative (Berlekamp 1968, pp. 91-93; van Lint and Nienhuys 1991, p. 123).
The totient function has the Dirichlet generating function
![]() |
(17) |
for (Hardy and Wright 1979, p. 250).
The totient function satisfies the inequality
![]() |
(18) |
for all except
and
(Kendall and Osborn 1965; Mitrinović and Sándor 1995, p. 9). Therefore, the only values of
for which
are
, 4, and 6. In addition, for composite
,
![]() |
(19) |
(Sierpiński and Schinzel 1988; Mitrinović and Sándor 1995, p. 9).
also satisfies
![]() |
(20) |
where is the Euler-Mascheroni constant. The values of
for which
are given by 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, ... (OEIS A100966).
The divisor function satisfies the congruence
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
(22) |
for all primes and no composite with the exception of 4, 6, and 22, where
is the divisor function. This fact was proved by Subbarao (1974), despite the implication to the contrary, "is it true for infinitely many composite
?," stated in Guy (1994, p. 92), a query subsequently removed from Guy (2004, p. 142). No composite solution is currently known to
![]() |
(23) |
(Honsberger 1976, p. 35).
A corollary of the Zsigmondy theorem leads to the following congruence,
![]() |
(24) |
(Zsigmondy 1882, Moree 2004, Ruiz 2004ab).
The first few for which
![]() |
(25) |
are given by 1, 3, 15, 104, 164, 194, 255, 495, 584, 975, ... (OEIS A001274), which have common values , 2, 8, 48, 80, 96, 128, 240, 288, 480, ... (OEIS A003275).
The only for which
![]() |
(26) |
is , giving
![]() |
(27) |
(Guy 2004, p. 139).
Values of shared among
that are close together include
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
(Guy 2004, p. 139). McCranie found an arithmetic progression of six numbers with equal totient functions,
![]() |
(32) |
as well as other progressions of six numbers starting at 1166400, 1749600, ... (OEIS A050518).
If the Goldbach conjecture is true, then for every positive integer , there are primes
and
such that
![]() |
(33) |
(Guy 2004, p. 160). Erdős asked if this holds for and
not necessarily prime, but this relaxed form remains unproven (Guy 2004, p. 160).
Guy (2004, p. 150) discussed solutions to
![]() |
(34) |
where is the divisor function. F. Helenius has found 365 such solutions, the first of which are 2, 8, 12, 128, 240, 720, 6912, 32768, 142560, 712800, ... (OEIS A001229).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "The Euler Totient Function." §24.3.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 826, 1972.
Beiler, A. H. Ch. 12 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
Berlekamp, E. R. Algorithmic Coding Theory. New York: McGraw-Hill, 1968.
Cohen, G. L. and Segal, S. L. "A Note Concerning Those for which
Divides
." Fib. Quart. 27, 285-286, 1989.
Conway, J. H. and Guy, R. K. "Euler's Totient Numbers." The Book of Numbers. New York: Springer-Verlag, pp. 154-156, 1996.
Courant, R. and Robbins, H. "Euler's Function. Fermat's Theorem Again." §2.4.3 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 48-49, 1996.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.
Guy, R. K. "Euler's Totient Function," "Does Properly Divide
," "Solutions of
," "Carmichael's Conjecture," "Gaps Between Totatives," "Iterations of
and
," "Behavior of
and
." §B36-B42 in Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 138-151, 2004.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 115-116, 2003.
Helenius, F. Untitled. http://pweb.netcom.com/~fredh/phisigma/pslist.html.
Honsberger, R. Mathematical Gems II. Washington, DC: Math. Assoc. Amer., p. 35, 1976.
Jones, G. A. and Jones, J. M. "Euler's Function." Ch. 5 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 83-96, 1998.
Kendall, D. G. and Osborn, R. "Two Simple Lower Bounds for Euler's Function." Texas J. Sci. 17, 1965.
Mitrinović, D. S. and Sándor, J. Handbook of Number Theory. Dordrecht, Netherlands: Kluwer, 1995.
Moree, P. "Phi Function Congruence." 13 Oct 2004. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0410&L=nmbrthry&T=0&F=&S=&P=1222.
Nagell, T. "Relatively Prime Numbers. Euler's -Function." §8 in Introduction to Number Theory. New York: Wiley, pp. 23-26, 1951.
Niven, I. M.; Zuckerman, H. S.; and Montgomery, H. L. An Introduction to the Theory of Numbers, 5th ed. New York: Wiley, p. 51, 1991.
Perrot, J. 1811. Quoted in Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 126, 2005.
Ruiz, S. "A Congruence With the Euler Totient Function." 11 Oct 2004a. http://arxiv.org/abs/math.GM/0410241.
Ruiz, S. "Phi Function Congruence." 12 Oct 2004b. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0410&L=nmbrthry&T=0&F=&S=&P=834.
Séroul, R. "The Euler Phi Function." §2.7 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 14-15, 2000.
Shanks, D. "Euler's Function." §2.27 in Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 68-71, 1993.
Sierpiński, W. and Schinzel, A. Elementary Theory of Numbers, 2nd Eng. ed. Amsterdam, Netherlands: North-Holland, 1988.
Sloane, N. J. A. Sequences A000010/M0299, A001229, A001274/M2999, A002088/M1008, A003275/M1874, A050518, and A100966 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.
Subbarao, M. V. "On Two Congruences for Primality." Pacific J. Math. 52, 261-268, 1974.
van Lint, J. H. and Nienhuys, J. W. Discrete Wiskunde.9062333680 Academic Service, 1991.
Zsigmondy, K. "Zur Theorie der Potenzreste." Monatshefte für Math. u. Phys. 3, 265-284, 1882.