1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Hecke Operator

المؤلف:  Apostol, T. M.

المصدر:  "The Hecke Operators." §6.7 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag

الجزء والصفحة:  pp. 120-122

23-12-2019

703

Hecke Operator

A family of operators mapping each space M_k of modular forms onto itself. For a fixed integer k and any positive integer n, the Hecke operator T_n is defined on the set M_k of entire modular forms of weight k by

(1)

For n a prime p, the operator collapses to

(2)

If f in M_k has the Fourier series

(3)

then T_nf has Fourier series

(4)

where

(5)

(Apostol 1997, p. 121).

If (m,n)=1, the Hecke operators obey the composition property

 T_mT_n=T_(mn).

(6)

Any two Hecke operators T(n) and T(m) on M_k commute with each other, and moreover

(7)

(Apostol 1997, pp. 126-127).

Each Hecke operator T_n has eigenforms when the dimension of M_k is 1, so for k=4, 6, 8, 10, and 14, the eigenforms are the Eisenstein series G_4G_6G_8G_(10), and G_(14), respectively. Similarly, each T_n has eigenforms when the dimension of the set of cusp forms M_(k,0) is 1, so for k=12, 16, 18, 20, 22, and 26, the eigenforms are DeltaDeltaG_4DeltaG_6DeltaG_8DeltaG_(10), and DeltaG_(14), respectively, where Delta is the modular discriminant of the Weierstrass elliptic function (Apostol 1997, p. 130).



REFERENCES:

Apostol, T. M. "The Hecke Operators." §6.7 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 120-122, 1997.

EN

تصفح الموقع بالشكل العمودي