x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Steffi Problem
المؤلف: Sloane, N. J. A
المصدر: Sequences A080202 and A080203 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة: ...
21-11-2019
719
A homework problem proposed in Steffi's math class in January 2003 asked students to prove that no ratio of two unequal numbers obtained by permuting all the digits 1, 2, ..., 7 results in an integer. If such a ratio existed, then some permutation of 1234567 would have to be divisible by . can immediately be restricted to , since a ratio of two permutations of the first seven digits must be less than , and the permutations were stated to be unequal, so . The case can be eliminated by the divisibility test for 3, which says that a number is divisible by 3 iff the sum of its digits is divisible by 3. Since the sum of the digits 1 to 7 is 28, which is not divisible by 3, there is no permutation of these digits that is divisible by 3. This also eliminates as a possibility, since a number must be divisible by 3 to be divisible by 6.
This leaves only the cases , 4, and 5 to consider. The case can be eliminated by noting that in order to be divisible by 5, the last digits of the numerator and denominator must be 5 and 1, respectively
(1) |
The largest possible ratio that can be obtained will then use the largest possible number in the numerator and the smallest possible in the denominator, namely
(2) |
But , so it is not possible to construct a fraction that is divisible by 5. Therefore, only and 4 need now be considered.
In general, consider the numbers of pairs of unequal permutations of all the digits in base () whose ratio is an integer. Then there is a unique solution
(3) |
a unique solution
(4) |
three solutions
(5) |
|||
(6) |
|||
(7) |
and so on.
The number of solutions for the first few bases and numbers of digits are summarized in the table below (OEIS A080202).
solutions for digits , , ..., | |
3 | 0 |
4 | 0, 1 |
5 | 0, 0, 1 |
6 | 0, 0, 3, 25 |
7 | 0, 0, 0, 2, 7 |
8 | 0, 0, 0, 0, 68, 623 |
9 | 0, 0, 0, 0, 0, 124, 1183 |
10 | 0, 0, 0, 0, 0, 0, 2338, 24603 |
11 | 0, 0, 0, 0, 0, 0, 3, 598, 5895 |
12 | 0, 0, 0, 0, 0, 0, 0, 0, 161947, 2017603 |
As can be seen from the table, in base 10, the only solutions are for the digits 12345678 and 123456789. Of the solutions for , there are two that produce three different integers for the same numerator:
(8) |
|||
(9) |
Taking the diagonal entries from this list for , 4, ... gives the sequence 0, 1, 1, 25, 7, 623, 1183, 24603, ... (OEIS A080203).
REFERENCES:
Sloane, N. J. A. Sequences A080202 and A080203 in "The On-Line Encyclopedia of Integer Sequences."