تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Inverse Cosecant
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
الجزء والصفحة:
...
10-10-2019
2071
![]() |
The inverse cosecant is the multivalued function (Zwillinger 1995, p. 465), also denoted
(Abramowitz and Stegun 1972, p. 79; Spanier and Oldham 1987, p. 332; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 125), that is the inverse function of the cosecant. The variants
(e.g., Beyer 1987, p. 141; Bronshtein and Semendyayev, 1997, p. 70) and
are sometimes used to refer to explicit principal values of the inverse cosecant, although this distinction is not always made (e.g,. Zwillinger 1995, p. 466). Worse yet, the notation
is sometimes used for the principal value, with
being used for the multivalued function (Abramowitz and Stegun 1972, p. 80). Note that in the notation
(commonly used in North America and in pocket calculators worldwide),
is the cosecant and the superscript
denotes an inverse function, not the multiplicative inverse.
The principal value of the inverse cosecant is implemented as ArcCsc[x] in the Wolfram Language.
The inverse cosecant is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at . This follows from the definition of
as
![]() |
(1) |
The derivative of is given by
![]() |
(2) |
which simplifies to
![]() |
(3) |
for . Its indefinite integral is
![]() |
(4) |
which simplifies to
![]() |
(5) |
for .
The inverse cosecant has Taylor series about infinity of
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(OEIS A055786 and A002595), where is a Legendre polynomial and
is a Pochhammer symbol.
The inverse cosecant satisfies
![]() |
(9) |
for ,
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
for all complex , and
![]() |
![]() |
(12) |
|
![]() |
![]() |
(13) |
|
![]() |
![]() |
(14) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.
Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, 1997.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 315, 1998.
Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.
Sloane, N. J. A. Sequences A002595/M4233 and A055786 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.
Zwillinger, D. (Ed.). "Inverse Circular Functions." §6.3 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 465-467, 1995.