تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bernoulli Polynomial
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula." §23.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
15-9-2019
1993
There are two definitions of Bernoulli polynomials in use. The th Bernoulli polynomial is denoted here by
(Abramowitz and Stegun 1972), and the archaic form of the Bernoulli polynomial by
(or sometimes
). When evaluated at zero, these definitions correspond to the Bernoulli numbers,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
The Bernoulli polynomials are an Appell sequence with
![]() |
(3) |
(Roman 1984, p. 31), giving the generating function
![]() |
(4) |
(Abramowitz and Stegun 1972, p. 804), first obtained by Euler (1738). The first few Bernoulli polynomials are
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
Whittaker and Watson (1990, p. 126) define an older type of "Bernoulli polynomial" by writing
![]() |
(12) |
instead of (12). This gives the polynomials
![]() |
(13) |
where is a Bernoulli number, the first few of which are
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
The Bernoulli polynomials also satisfy
![]() |
(19) |
and
![]() |
(20) |
(Lehmer 1988). For ,
![]() |
(21) |
so
![]() |
(22) |
for odd .
They also satisfy the relation
![]() |
(23) |
(Whittaker and Watson 1990, p. 127).
For rational values of ,
can be expressed for positive integers
in terms of Bernoulli and Euler numbers, for example
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
Bernoulli (1713) defined the polynomials in terms of sums of the powers of consecutive integers,
![]() |
(29) |
The Bernoulli polynomials satisfy the recurrence relation
![]() |
(30) |
(Appell 1882), and obey the identity
![]() |
(31) |
where is interpreted as the Bernoulli number
. Another related identity is
![]() |
(32) |
where is interpreted as the Bernoulli polynomial
.
Hurwitz gave the Fourier series
![]() |
(33) |
for , where the prime in the summation indicates that the term
is omitted. Performing the sum gives
![]() |
(34) |
where is the polylogarithm function. Raabe (1851) found
![]() |
(35) |
A sum identity involving the Bernoulli polynomials is
![]() |
(36) |
for an integer. A sum identity due to S. M. Ruiz is
![]() |
(37) |
where is a binomial coefficient. The Bernoulli polynomials are also given by the formula
![]() |
(38) |
where is a Stirling number of the second kind and
is a falling factorial (Roman 1984, p. 94). A general identity is given by
![]() |
(39) |
which simplifies to
![]() |
(40) |
(Roman 1984, p. 97). Gosper gave the identity
![]() |
(41) |
A generalization of the Bernoulli polynomials with an additional free parameter can be defined such that
(Roman 1984, p. 93). These polynomials have the generating function
![]() |
(42) |
and are implemented in the Wolfram Language as NorlundB[n, alpha, z].
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula." §23.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 804-806, 1972.
Appell, P. E. "Sur une classe de polynomes." Annales d'École Normal Superieur, Ser. 2 9, 119-144, 1882.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 330, 1985.
Bernoulli, J. Ars conjectandi. Basel, Switzerland, p. 97, 1713. Published posthumously.
Euler, L. "Methodus generalis summandi progressiones." Comment. Acad. Sci. Petropol. 6, 68-97, 1738.
Lehmer, D. H. "A New Approach to Bernoulli Polynomials." Amer. Math. Monthly. 95, 905-911, 1988.
Lucas, E. Ch. 14 in Théorie des Nombres. Paris, 1891.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Generalized Zeta Function , Bernoulli Polynomials
, Euler Polynomials
, and Polylogarithms
." §1.2 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 23-24, 1990.
Raabe, J. L. "Zurückführung einiger Summen und bestimmten Integrale auf die Jakob Bernoullische Function." J. reine angew. Math. 42, 348-376, 1851.
Roman, S. "The Bernoulli Polynomials." §4.2.2 in The Umbral Calculus. New York: Academic Press, pp. 93-100, 1984.
Spanier, J. and Oldham, K. B. "The Bernoulli Polynomial ." Ch. 19 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 167-173, 1987.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.