x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Riemann Zeta Function zeta(2)
المؤلف: Apostol, T. M.
المصدر: "A Proof That Euler Missed: Evaluating zeta(2) the Easy Way." Math. Intel. 5
الجزء والصفحة: ...
13-9-2019
3057
The value for
(1) |
can be found using a number of different techniques (Apostol 1983, Choe 1987, Giesy 1972, Holme 1970, Kimble 1987, Knopp and Schur 1918, Kortram 1996, Matsuoka 1961, Papadimitriou 1973, Simmons 1992, Stark 1969, 1970, Yaglom and Yaglom 1987).
is therefore the definite sum version of the indefinite sum
(2) |
|||
(3) |
where is a generalized harmonic number (whose numerator is known as a Wolstenholme number) and is a polygamma function.
The problem of finding this value analytically is sometimes known as the Basel problem (Derbyshire 2004, pp. 63 and 370) or Basler problem (Castellanos 1988). It was first proposed by Pietro Mengoli in 1644 (Derbyshire 2004, p. 370). The solution
(4) |
was first found by Euler in 1735 (Derbyshire 2004, p. 64) or 1736 (Srivastava 2000).
Yaglom and Yaglom (1987), Holme (1970), and Papadimitriou (1973) all derive the result, from de Moivre's identity or related identities.
is given by the series
(5) |
(Knopp 1990, pp. 266-267), probably known to Euler and rediscovered by Apéry.
Bailey (2000) and Borwein and Bailey (2003, pp. 128-129) give a collection of BBP-type formulas that include a number for ,
(6) |
|||
(7) |
is given by the double series
(8) |
(B. Cloitre, pers. comm., Dec. 9, 2004).
One derivation for considers the Fourier series of
(9) |
which has coefficients given by
(10) |
|||
(11) |
|||
(12) |
where is a generalized hypergeometric function and (12) is true since the integrand is odd. Therefore, the Fourier series is given explicitly by
(13) |
If , then
(14) |
so the Fourier series is
(15) |
Letting gives , so
(16) |
and we have
(17) |
Higher values of can be obtained by finding and proceeding as above.
The value can also be found simply using the root linear coefficient theorem. Consider the equation and expand sin in a Maclaurin series
(18) |
(19) |
|||
(20) |
where . But the zeros of occur at , , , ..., or , , .... Therefore, the sum of the roots equals the coefficient of the leading term
(21) |
which can be rearranged to yield
(22) |
Yet another derivation (Simmons 1992) evaluates using Beukers's (1979) integral
(23) |
|||
(24) |
|||
(25) |
|||
(26) |
|||
(27) |
|||
(28) |
|||
(29) |
To evaluate the integral, rotate the coordinate system by so
(30) |
|||
(31) |
and
(32) |
|||
(33) |
Then
(34) |
|||
(35) |
Now compute the integrals and .
(36) |
|||
(37) |
|||
(38) |
Make the substitution
(39) |
|||
(40) |
|||
(41) |
so
(42) |
and
(43) |
can also be computed analytically,
(44) |
|||
(45) |
|||
(46) |
But
(47) |
|||
(48) |
|||
(49) |
|||
(50) |
|||
(51) |
so
(52) |
|||
(53) |
|||
(54) |
Combining and gives
(55) |
REFERENCES:
Apostol, T. M. "A Proof That Euler Missed: Evaluating the Easy Way." Math. Intel. 5, 59-60, 1983.
Bailey, D. H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.
Beukers, F. "A Note on the Irrationality of and ." Bull. London Math. Soc. 11, 268-272, 1979.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 89-90, 2003.
Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.
Choe, B. R. "An Elementary Proof of ." Amer. Math. Monthly 94, 662-663, 1987.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Giesy, D. P. "Still Another Proof That ." Math. Mag. 45, 148-149, 1972.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 37-40, 2003.
Holme, F. "Ein enkel beregning av ." Nordisk Mat. Tidskr. 18, 91-92 and 120, 1970.
Kimble, G. "Euler's Other Proof." Math. Mag. 60, 282, 1987.
Knopp, K. Theory and Application of Infinite Series. New York: Dover, 1990.
Knopp, K. and Schur, I. "Über die Herleitug der Gleichung ." Archiv der Mathematik u. Physik 27, 174-176, 1918.
Kortram, R. A. "Simple Proofs for and ." Math. Mag. 69, 122-125, 1996.
Matsuoka, Y. "An Elementary Proof of the Formula ." Amer. Math. Monthly 68, 486-487, 1961.
Papadimitriou, I. "A Simple Proof of the Formula ." Amer. Math. Monthly 80, 424-425, 1973.
Simmons, G. F. "Euler's Formula by Double Integration." Ch. B. 24 in Calculus Gems: Brief Lives and Memorable Mathematics. New York: McGraw-Hill, 1992.
Spiess, O. "Die Summe der reziproken Quadratzahlen." In Festschrift zum 60 Geburtstag von Dr. Andreas Speiser (Ed. L. V. Ahlfors et al. ). Zürich: Füssli, pp. 66-86, 1945.
Srivastava, H. M. "Some Simple Algorithms for the Evaluations and Representations of the Riemann Zeta Function at Positive Integer Arguments." J. Math. Anal. Appl. 246, 331-351, 2000.
Stark, E. L. "Another Proof of the Formula ." Amer. Math. Monthly 76, 552-553, 1969.
Stark, E. L. "." Praxis Math. 12, 1-3, 1970.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 40, 1986.
Yaglom, A. M. and Yaglom, I. M. Problem 145 in Challenging Mathematical Problems with Elementary Solutions, Vol. 2. New York: Dover, 1987.