1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Pochhammer Symbol

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

الجزء والصفحة:  ...

18-8-2019

2260

Pochhammer Symbol

PochhammerSymbol

The Pochhammer symbol

(x)_n = (Gamma(x+n))/(Gamma(x))

(1)

= x(x+1)...(x+n-1)

(2)

(Abramowitz and Stegun 1972, p. 256; Spanier 1987; Koepf 1998, p. 5) for n>=0 is an unfortunate notation used in the theory of special functions for the rising factorial, also known as the rising factorial power (Graham et al. 1994, p. 48) or ascending Factorial (Boros and Moll 2004, p. 16). The Pochhammer symbol is implemented in the Wolfram Language as Pochhammer[xn].

In combinatorics, the notation x^((n)) (Roman 1984, p. 5), <x>_n (Comtet 1974, p. 6), or x^(n^_) (Graham et al. 1994, p. 48) is used for the rising factorial, while (x)_n or x^(n__) denotes the falling factorial (Graham et al. 1994, p. 48). Extreme caution is therefore needed in interpreting the notations (x)_n and x^((n)).

The first few values of (x)_n for nonnegative integers n are

(x)_0 = 1

(3)

(x)_1 = x

(4)

(x)_2 = x^2+x

(5)

(x)_3 = x^3+3x^2+2x

(6)

(x)_4 = x^4+6x^3+11x^2+6x

(7)

(OEIS A054654).

In closed form, (x)_n can be written

 (x)_n=sum_(k=0)^n(-1)^(n-k)s(n,k)x^k,

(8)

where s(n,k) is a Stirling number of the first kind.

The Pochhammer symbol satisfies

 (-x)_n=(-1)^n(x-n+1)_n,

(9)

the dimidiation formulas

(x)_(2n) = 2^(2n)(x/2)_n((1+x)/2)_n

(10)

(x)_(2n+1) = 2^(2n+1)(x/2)_(n+1)((1+x)/2)_n,

(11)

and the duplications formula

 (2x)_n=<span style={2^n(x)_(n/2)(x+1/2)_(n/2) for n even; 2^n(x)_((n+1)/2)(x+1/2)_((n-1)/2) for n odd " src="http://mathworld.wolfram.com/images/equations/PochhammerSymbol/NumberedEquation3.gif" style="height:58px; width:267px" />

(12)

(Boros and Moll 2004, p. 17).

A ratio of Pochhammer symbols is given in closed form by

 ((x)_n)/((x)_m)=<span style={(x+m)_(n-m) if n>=m; 1/((x+n)_(m-n)) if n<=m " src="http://mathworld.wolfram.com/images/equations/PochhammerSymbol/NumberedEquation4.gif" style="height:64px; width:178px" />

(13)

(Boros and Moll 2004, p. 17).

The derivative is given by

 d/(dx)(x)_n=(x)_n[psi_0(n+x)-psi_0(x)],

(14)

where psi_0(x) is the digamma function.

Special values include

(1)_n = n!

(15)

(1/2)_n = ((2n-1)!!)/(2^n).

(16)

The Pochhammer symbol (x)_n obeys the transformation due to Euler

 sum_(n=0)^infty((a)_n)/(n!)a_nz^n=(1-z)^(-a)sum_(n=0)^infty((a)_n)/(n!)Delta^na_0(z/(1-z))^n,

(17)

where Delta is the forward difference and

 Delta^ka_0=sum_(m=0)^k(-1)^m(k; m)a_(k-m)

(18)

(Nørlund 1955).

The sum of 1/(k)_p can be done in closed form as

 sum_(k=1)^n1/((k)_p)=1/((p-1)Gamma(p))-(nGamma(n))/((p-1)Gamma(n+p))

(19)

for p>1.

PochhammerProductCurve

Consider the product

f(z) = lim_(k->infty)product_(i=0)^(k)(z+i/k)

(20)

= lim_(k->infty)(1/k)^(k+1)(kz)_(k+1).

(21)

This function converges to 0, to a finite value, or diverges, depending on the value of z. The critical curve is given by the implicit equation

 R[-1+ln(z^(-z)(1+z)^(1+z))]=0.

(22)

Inside this curve, the function converges to 0, whereas outside it, it diverges. The maximum real value at which convergence occurs is given by x_+=0.54221... (OEIS A090462), and the minimum value by x_-=-(1+x_+). The extremal values of yare given by y_+/-=+/-0.95883... (OEIS A090463). On the critical contour, f(z) takes on the value

 f(z)=1/2[lnz+ln(z+1)].

(23)

PochhammerProductSurface

Plotting a suitably scaled version of f(z) with k finite shows beautiful and subtle structures such as those illustrated above for k=100 (M. Trott, pers. comm., Dec. 1, 2003).

PochhammerProductSinArg

Another beautiful visualization plots sin(arg(f(z))), as illustrated above for k=2048 (M. Trott, pers. comm., Dec. 2, 2003).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.

Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, 1974.

Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, p. 52, 1981.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.

Nørlund, N. E. "Hypergeometric Functions." Acta Math. 94, 289-349, 1955.

Roman, S. The Umbral Calculus. New York: Academic Press, p. 5, 1984.

Sloane, N. J. A. Sequences A054654, A090462, and A090463 in "The On-Line Encyclopedia of Integer Sequences."

Spanier, J. and Oldham, K. B. "The Pochhammer Polynomials (x)_n." Ch. 18 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 149-165, 1987.

EN

تصفح الموقع بالشكل العمودي