1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Perfect Power

المؤلف:  Graham, R. L.; Knuth, D. E.; and Patashnik, O.

المصدر:  "Binomial Coefficients." Ch. 5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley

الجزء والصفحة:  ...

16-8-2019

1356

Perfect Power

 

A perfect power is a number n of the form m^k, where m>1 is a positive integer and k>=2. If the prime factorization of n is n=p_1^(a_1)p_2^(a_2)...p_k^(a_k), then n is a perfect power iff GCD(a_1,a_2,...,a_k)>1.

Including duplications (i.e., taking all numbers up to some cutoff and taking all their powers) and taking m>1, the first few are 4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, 64, ... (OEIS A072103). Here, 16 is duplicated since

 16=2^4=4^2.

(1)

As shown by Goldbach, the sum of reciprocals of perfect powers (excluding 1) with duplications converges,

 sum_(m=2)^inftysum_(k=2)^infty1/(m^k)=1.

(2)

The first few numbers that are perfect powers in more than one way are 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, ... (OEIS A117453).

The first few perfect powers without duplications are 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, ... (OEIS A001597). Even more amazingly, the sum of the reciprocals of these numbers (excluding 1) is given by

 sum_(k=2)^inftymu(k)[1-zeta(k)] approx 0.874464368...

(3)

(OEIS A072102), where mu(k) is the Möbius function and zeta(k) is the Riemann zeta function.

The numbers of perfect powers without duplications less than 10, 10^210^3, ... are 4, 13, 41, 125, 367, ... (OEIS A070428).


REFERENCES:

Finch, S. R. "Niven's Constant." §2.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 112-115, 2003.

Gould, H. W. "Problem H-170." Fib. Quart. 8, 268, 1970.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Binomial Coefficients." Ch. 5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, p. 66, 1994.

Sloane, N. J. A. Sequences A001597/M3326, A070428, A072102, A072103, and A117453 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي