x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Harmonic Series
المؤلف: Arfken, G.
المصدر: Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press,
الجزء والصفحة: ...
8-8-2019
3211
The series
(1) |
is called the harmonic series. It can be shown to diverge using the integral test by comparison with the function . The divergence, however, is very slow. Divergence of the harmonic series was first demonstrated by Nicole d'Oresme (ca. 1323-1382), but was mislaid for several centuries (Havil 2003, p. 23; Derbyshire 2004, pp. 9-10). The result was proved again by Pietro Mengoli in 1647, by Johann Bernoulli in 1687, and by Jakob Bernoulli shortly thereafter (Derbyshire 2004, pp. 9-10).
Progressions of the form
(2) |
are also sometimes called harmonic series (Beyer 1987).
Oresme's proof groups the harmonic terms by taking 2, 4, 8, 16, ... terms (after the first two) and noting that each such block has a sum larger than 1/2,
(3) |
|||
(4) |
and since an infinite sum of 1/2's diverges, so does the harmonic series.
The generalization of the harmonic series
(5) |
is known as the Riemann zeta function.
The sum of the first few terms of the harmonic series is given analytically by the th harmonic number
(6) |
|||
(7) |
where is the Euler-Mascheroni constant and is the digamma function.
The only values of for which is a regular number are , 2, and 6 (Havil 2003, pp. 24-25).
The number of terms needed for to exceed 1, 2, 3, ... are 1, 4, 11, 31, 83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, ... (OEIS A004080; DeTemple and Wang 1991). Using the analytic form shows that after terms, the sum is still less than 20. Furthermore, to achieve a sum greater than 100, more than terms are needed! Written explicitly, the number of terms is
(8) |
(Boas and Wrench 1971; Gardner 1984, p. 167). More generally, the number of terms needed to equal or exceed , , , ... are 12367, 15092688622113788323693563264538101449859497, , ... (OEIS A096618).
The harmonic series of primes
(9) |
taken over all primes also diverges (Wells 1986, p. 41) with asymptotic behavior
(10) |
(Hardy 1999, p. 50), where is the Mertens constant.
Rather surprisingly, the alternating series
(11) |
converges to the natural logarithm of 2. An explicit formula for the partial sum of the alternating series is given by
(12) |
Gardner (1984) notes that this series never reaches an integer sum.
The partial sums of the harmonic series are plotted in the left figure above, together with two related series.
It is not known if the series
(13) |
converges (Borwein et al. 2004, p. 56). After terms, the series equals approximately 2.163.
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 279-280, 1985.
Atanassov, K. T. 'Notes on the Harmonic Series." Bull. Number Th. Related Topics 10, 10-20, 1986.
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 8, 1987.
Boas, R. P. and Wrench, J. W. "Partial Sums of the Harmonic Series." Amer. Math. Monthly 78, 864-870, 1971.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 8-9, 2004.
DeTemple, D. W. and Wang, S.-H. "Half Integer Approximations for the Partial Sums of the Harmonic Series." J. Math. Anal. Appl. 160, 149-156, 1991.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 165-172, 1984.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Havil, J. "The Harmonic Series." Ch. 2 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 21-25, 2003.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, p. 217, 1998.
Honsberger, R. "An Intriguing Series." Ch. 10 in Mathematical Gems II. Washington, DC: Math. Assoc. Amer., pp. 98-103, 1976.
Rosenbaum, B. "Solution to Problem E46." Amer. Math. Monthly 41, 48, 1934.
Shutler, P. M. E. "Euler's Constant, Stirling's Approximation and the Riemann Zeta Function." Internat. J. Math. Ed. Sci. Tech. 28, 677-688, 1997.
Sloane, N. J. A. Sequence A004080 in "The On-Line Encyclopedia of Integer Sequences."
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 41, 1986.