تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Parabolic Cylinder Function
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Parabolic Cylinder Function." Ch. 19 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
7-8-2019
2187
The parabolic cylinder functions are a class of functions sometimes called Weber functions. There are a number of slightly different definitions in use by various authors.
Whittaker and Watson (1990, p. 347) define the parabolic cylinder functions as solutions to the Weber differential equation
![]() |
(1) |
The two independent solutions are given by and
, where
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
which, in the right half-plane , is equivalent to
![]() |
(4) |
where is the Whittaker function (Whittaker and Watson 1990, p. 347; Gradshteyn and Ryzhik 2000, p. 1018) and
is a confluent hypergeometric function of the first kind.
This function is implemented in the Wolfram Language as ParabolicCylinderD[nu, z].
For a nonnegative integer
, the solution
reduces to
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where is a Hermite polynomial and
is a modified Hermite polynomial. Special cases include
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
for , where
is an modified Bessel function of the second kind.
Plots of the function in the complex plane are shown above.
The parabolic cylinder functions satisfy the recurrence relations
![]() |
(9) |
![]() |
(10) |
The parabolic cylinder function for integral can be defined in terms of an integral by
![]() |
(11) |
(Watson 1966, p. 308), which is similar to the Anger function. The result
![]() |
(12) |
where is the Kronecker delta, can also be used to determine the coefficients in the expansion
![]() |
(13) |
as
![]() |
(14) |
For real,
![]() |
(15) |
(Gradshteyn and Ryzhik 2000, p. 885, 7.711.3), where is the gamma function and
is the polygamma function of order 0.
Abramowitz and Stegun (1972, p. 686) define the parabolic cylinder functions as solutions to
![]() |
(16) |
sometimes called the parabolic cylinder differential equation (Zwillinger 1995, p. 414; Zwillinger 1997, p. 126). This can be rewritten by completing the square,
![]() |
(17) |
Now letting
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
gives
![]() |
(20) |
where
![]() |
(21) |
Equation (◇) has the two standard forms
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
For a general , the even and odd solutions to (◇) are
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
where is a confluent hypergeometric function of the first kind. If
is a solution to (22), then (23) has solutions
![]() |
(26) |
Abramowitz and Stegun (1972, p. 687) define standard solutions to (◇) as
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
In terms of Whittaker and Watson's functions,
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Parabolic Cylinder Function." Ch. 19 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 685-700, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. "Parabolic Cylinder Functions" and "Parabolic Cylinder Functions " §7.7 and 9.24-9.25 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 835-842, 1018-1021, 2000.
Iyanaga, S. and Kawada, Y. (Eds.). "Parabolic Cylinder Functions (Weber Functions)." Appendix A, Table 20.III in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1479, 1980.
Jeffreys, H. and Jeffreys, B. S. "The Parabolic Cylinder, Hermite, and Hh Functions" et seq. §23.08-23.081 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 620-627, 1988.
Spanier, J. and Oldham, K. B. "The Parabolic Cylinder Function ." Ch. 46 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 445-457, 1987.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.
Whittaker, E. T. and Watson, G. N. "The Parabolic Cylinder Function." §16.5 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 347-348, 1990.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 414, 1995.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 126, 1997.