1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Unit Square Integral

المؤلف:  Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H

المصدر:  Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

الجزء والصفحة:  ...

17-9-2018

3290

Unit Square Integral

Integrals over the unit square arising in geometric probability are

 int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] 
int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy 
 =1/6[sqrt(2)+sinh^(-1)(1)],

(1)

which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively.

Unit square integrals involving the absolute value are given by

int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2))

(2)

int_0^1int_0^1|x+y|^ndxdy = (2(2^(n+1)-1))/((n+1)(n+2)),

(3)

for R[n]>-1 and R[n]>-2, respectively.

Another simple integral is given by

 int_0^1int_0^1(dxdy)/(sqrt(1+x^2+y^2))=4ln(2+sqrt(3))-2/3pi

(4)

(Bailey et al. 2007, p. 67). Squaring the denominator gives

int_0^1int_0^1(dxdy)/(x^2+y^2+1) = int_0^1(tan^(-1)(1/(sqrt(1+y^2))))/(sqrt(1+y^2))dy

(5)

= int_0^11/(sqrt(4x^2-1))[tan^(-1)(3/(sqrt(4x^2-1)))-tan^(-1)((1+2x^2)/(sqrt(4x^2-1)))]dx

(6)

= int_0^(pi/4)(tan^(-1)(costheta))/(costheta)dtheta

(7)

= 1/2pisinh^(-1)1-K+1/6_3F_2(1/2,1,1;3/2,3/2;1/9)

(8)

= 0.63951...

(9)

(OEIS A093754; M. Trott, pers. comm.), where K is Catalan's constant and _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function. A related integral is given by

 int_0^1int_0^1(dxdy)/(x^2+y^2),

(10)

which diverges in the Riemannian sense, as can quickly seen by transforming to polar coordinates. However, taking instead Hadamard integral to discard the divergent portion inside the unit circle gives

Hint_0^1int_0^1(dxdy)/(x^2+y^2) = intint_(x^2+y^2>1; 0<x<1; 0<y<1)(dxdy)/(x^2+y^2)

(11)

= int_0^11/x[tan^(-1)(1/x)-tan^(-1)((sqrt(1-x^2))/x)]dx

(12)

= 1/2piln2-K

(13)

= 0.172827...

(14)

(OEIS A093753), where K is Catalan's constant.

A collection of beautiful integrals over the unit square are given by Guillera and Sondow (2005) that follow from the general integrals

int_0^1int_0^1(x^(u-1)y^(v-1))/(1-xyz)[-ln(xy)]^sdxdy = Gamma(s+1)(Phi(z,s+1,v)-Phi(z,s+1,u))/(u-v)

(15)

int_0^1int_0^1((xy)^(u-1))/(1-xyz)[-ln(xy)]^sdxdy = Gamma(s+2)Phi(z,s+2,u),

(16)

for u,v>0R[s]>-2 if z in C-[1,infty), and R[s]>-1 if z=1, where Gamma(s) is the gamma function and Phi(z,s,a) is the Lerch transcendent. In (15), to handle the case u=v, take the limit as v->u, which gives (16).

Another result is

 int_0^1int_0^1(1-x)/((1-xy)(-lnxy))(xy)^(u-1)dxdy=lnu-psi_0(u)

(17)

(Guillera and Sondow 2005), for u>0 and where psi_0(z) is the digamma function.

Guillera and Sondow (2005) also give

int_0^1int_0^1([-ln(xy)]^s)/(1-xy)dxdy = Gamma(s+2)zeta(s+2)

(18)

int_0^1int_0^1([-ln(xy)]^s)/(1+xy)dxdy = Gamma(s+2)eta(s+2)

(19)

int_0^1int_0^1([-ln(xy)]^s)/(1+x^2y^2)dxdy = Gamma(s+2)beta(s+2),

(20)

where the first holds for R[s]>-1, the second and third for R[s]>-2zeta(s) is the Riemann zeta function, eta(s) is the Dirichlet eta function, and beta(s) is the Dirichlet beta function. (19) was found by Hadjicostas (2002) for s>=0 an integer. Formulas (18) and (19) are special cases of (16) obtained by setting u=1 then taking z=1 and z=-1, respectively.

The beautiful formulas

int_0^1int_0^1(dxdy)/(1-xy) = zeta(2)

(21)

int_0^1int_0^1(-ln(xy))/(1-xy)dxdy = 2zeta(3)

(22)

were given by Beukers (1979). These integrals are special cases of (19) obtained by taking s=0 and 1, respectively. An analog involving Catalan's constant K is given by

 int_0^1int_0^1(dxdy)/((1-xy)sqrt(x(1-y)))=8K

(23)

(Zudilin 2003).

Other beautiful integrals related to Hadjicostas's formula are given by

int_0^1int_0^1(x-1)/((1-xy)ln(xy))dxdy = gamma

(24)

int_0^1int_0^1(x-1)/((1+xy)ln(xy))dxdy = ln(4/pi)

(25)

(Sondow 2003, 2005; Borwein et al. 2004, p. 49), where gamma is the Euler-Mascheroni constant.

A collection of other special cases (Guillera and Sondow 2005) includes

int_0^1int_0^1(-xln(xy))/(1+x^2y^2)dxdy = K-1/(48)pi^2

(26)

int_0^1int_0^1(-xln(xy))/(1-x^2y^2)dxdy = 1/(12)pi^2

(27)

int_0^1int_0^1(-ln(xy))/(1+x^2y^2)dxdy = 1/(16)pi^3

(28)

int_0^1int_0^1(dxdy)/(1+x^2y^2) = K

(29)

int_0^1int_0^1(-dxdy)/((2-xy)ln(xy)) = ln2

(30)

int_0^1int_0^1(dxdy)/(2-xy) = 1/(12)pi^2-1/2ln^22

(31)

int_0^1int_0^1(-ln(xy))/(2-xy)dxdy = 7/4zeta(3)-1/6pi^2ln2+1/3ln^32

(32)

int_0^1int_0^1(-x)/((2-xy)ln(xy))dxdy = lnsigma

(33)

int_0^1int_0^1(-dxdy)/((phi-xy)ln(xy)) = 2lnphi

(34)

int_0^1int_0^1(-dxdy)/((phi^2-xy)ln(xy)) = lnphi

(35)

int_0^1int_0^1(dxdy)/(phi-xy) = 1/(10)pi^2-ln^2phi

(36)

int_0^1int_0^1(dxdy)/(phi^2-xy) = 1/(15)pi^2-ln^2phi

(37)

int_0^1int_0^1(-ln(xy))/(phi^2-xy)dxdy = 8/5zeta(3)-4/(15)pi^2lnphi+4/3ln^3phi

(38)

int_0^1int_0^1(-x)/((1+xy)ln(xy))dxdy = ln(1/2pi)

(39)

int_0^1int_0^1(-x)/((1+x^2y^2)ln(xy))dxdy = ln[(sqrt(2pi))/(Gamma^2(3/4))]

(40)

int_0^1int_0^1(-1)/((1+x^2y^2)ln(xy))dxdy = 1/4pi

(41)

int_0^1int_0^1x/(1-x^3y^3)dxdy = pi/(3sqrt(3))

(42)

int_0^1int_0^1(dxdy)/(1-x^2y^2) = 1/8pi^2

(43)

int_0^1int_0^1(ln(2-x))/(1-xy)dxdy = 1/4pi^2ln2-zeta(3)

(44)

int_0^1int_0^1(ln(2-xy))/(1-xy)dxdy = 5/8zeta(3)

(45)

int_0^1int_0^1(ln(1+x))/(1-xy)dxdy = 5/8zeta(3)

(46)

int_0^1int_0^1(ln(1+xy))/(1-xy)dxdy = 1/4pi^2ln2-zeta(3)

(47)

int_0^1int_0^1(-ln(1-x))/(1-xy)dxdy = 2zeta(3)

(48)

int_0^1int_0^1(-ln(1-xy))/(1-xy)dxdy = zeta(3)

(49)

int_0^1int_0^1(xdxdy)/([-ln(xy)]^(3/2)) = 2(sqrt(2)-1)sqrt(pi)

(50)

int_0^1int_0^1(dxdy)/([-ln(xy)]^(3/2)) = sqrt(pi)

(51)

int_0^1int_0^1(dxdy)/([-ln(xy)]^(5/4)) = Gamma(3/4)

(52)

int_0^1int_0^1(xln^2(xy))/((1+x^2y^2)^2)dxdy = K-1/(48)pi^2+1/(32)pi^3

(53)

int_0^1int_0^1(ln^4(xy))/((1+xy)^2)dxdy = (225)/2zeta(5)

(54)

int_0^1int_0^1(-dxdy)/((1+x^2y^2)^2ln(xy)) = 1/8(pi+2)

(55)

int_0^1int_0^1(-xdxdy)/((1+xy)^2ln(xy)) = ln((A^6)/(2^(1/6)sqrt(pie)))

(56)

int_0^1int_0^1(1-x)/((1+xy)ln^2(xy))dxdy = ln((pi^(1/2)A^6)/(2^(7/6)e))

(57)

int_0^1int_0^1(1-x^2)/((1+x^2y^2)ln^2(xy))dxdy = ln[(Gamma(1/4))/(2Gamma(3/4))]+(2K)/pi-1/2

(58)

int_0^1int_0^1(1-x)/([-ln(xy)]^(5/2))dxdy = 1/3sqrt(pi)(8sqrt(2)-10),

(59)

where zeta(n) is the Riemann zeta function, zeta(3) is Apéry's constant, phi is the golden ratio, sigma is Somos's quadratic recurrence constant, and A is the Glaisher-Kinkelin constant. Equation (57) appears in Sondow (2005), but is a special case of the type considered by Guillera and Sondow (2005).

Corresponding single integrals over [0,1] for most of these integrals can be found by making the change of variables x=X/Yy=Y. The Jacobian then gives dxdy=Y^(-1)dXdY, and the new limits of integration are {X,0,1}{Y,X,1}. Doing the integral with respect to Y then gives a 1-dimensional integral over [0,1]. For details, see the first part of the proof of Guillera-Sondow's Theorem 3.1.


REFERENCES:

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Beukers, F. "A Note on the Irrationality of zeta(2) and zeta(3)." Bull. London Math. Soc. 11, 268-272, 1979.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005. http://arxiv.org/abs/math.NT/0506319.

Hadjicostas, P. "Some Generalizations of Beukers' Integrals." Kyungpook Math. J. 42, 399-416, 2002.

Sloane, N. J. A. Sequences A093753 and A093754 in "The On-Line Encyclopedia of Integer Sequences."

Sondow, J. "Criteria for Irrationality of Euler's Constant." Proc. Amer. Math. Soc. 131, 3335-3344, 2003. http://arxiv.org/abs/math.NT/0209070.

Sondow, J. "Double Integrals for Euler's Constant and ln(4/pi) and an Analog of Hadjicostas's Formula." Amer. Math. Monthly 112, 61-65, 2005.

Zudilin, W. "An Apéry-Like Difference Equation for Catalan's Constant." Electronic J. Combinatorics 10, No. 1, R14, 1-10, 2003. http://www.combinatorics.org/Volume_10/Abstracts/v10i1r14.html.

EN

تصفح الموقع بالشكل العمودي