x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Unit Square Integral
المؤلف: Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H
المصدر: Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
الجزء والصفحة: ...
17-9-2018
3290
Integrals over the unit square arising in geometric probability are
(1) |
which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively.
Unit square integrals involving the absolute value are given by
(2) |
|||
(3) |
for and , respectively.
Another simple integral is given by
(4) |
(Bailey et al. 2007, p. 67). Squaring the denominator gives
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
(OEIS A093754; M. Trott, pers. comm.), where is Catalan's constant and is a generalized hypergeometric function. A related integral is given by
(10) |
which diverges in the Riemannian sense, as can quickly seen by transforming to polar coordinates. However, taking instead Hadamard integral to discard the divergent portion inside the unit circle gives
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
(OEIS A093753), where is Catalan's constant.
A collection of beautiful integrals over the unit square are given by Guillera and Sondow (2005) that follow from the general integrals
(15) |
|||
(16) |
for , if , and if , where is the gamma function and is the Lerch transcendent. In (15), to handle the case , take the limit as , which gives (16).
Another result is
(17) |
(Guillera and Sondow 2005), for and where is the digamma function.
Guillera and Sondow (2005) also give
(18) |
|||
(19) |
|||
(20) |
where the first holds for , the second and third for , is the Riemann zeta function, is the Dirichlet eta function, and is the Dirichlet beta function. (19) was found by Hadjicostas (2002) for an integer. Formulas (18) and (19) are special cases of (16) obtained by setting then taking and , respectively.
The beautiful formulas
(21) |
|||
(22) |
were given by Beukers (1979). These integrals are special cases of (19) obtained by taking and 1, respectively. An analog involving Catalan's constant is given by
(23) |
(Zudilin 2003).
Other beautiful integrals related to Hadjicostas's formula are given by
(24) |
|||
(25) |
(Sondow 2003, 2005; Borwein et al. 2004, p. 49), where is the Euler-Mascheroni constant.
A collection of other special cases (Guillera and Sondow 2005) includes
(26) |
|||
(27) |
|||
(28) |
|||
(29) |
|||
(30) |
|||
(31) |
|||
(32) |
|||
(33) |
|||
(34) |
|||
(35) |
|||
(36) |
|||
(37) |
|||
(38) |
|||
(39) |
|||
(40) |
|||
(41) |
|||
(42) |
|||
(43) |
|||
(44) |
|||
(45) |
|||
(46) |
|||
(47) |
|||
(48) |
|||
(49) |
|||
(50) |
|||
(51) |
|||
(52) |
|||
(53) |
|||
(54) |
|||
(55) |
|||
(56) |
|||
(57) |
|||
(58) |
|||
(59) |
where is the Riemann zeta function, is Apéry's constant, is the golden ratio, is Somos's quadratic recurrence constant, and is the Glaisher-Kinkelin constant. Equation (57) appears in Sondow (2005), but is a special case of the type considered by Guillera and Sondow (2005).
Corresponding single integrals over for most of these integrals can be found by making the change of variables , . The Jacobian then gives , and the new limits of integration are , . Doing the integral with respect to then gives a 1-dimensional integral over . For details, see the first part of the proof of Guillera-Sondow's Theorem 3.1.
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Beukers, F. "A Note on the Irrationality of and ." Bull. London Math. Soc. 11, 268-272, 1979.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005. http://arxiv.org/abs/math.NT/0506319.
Hadjicostas, P. "Some Generalizations of Beukers' Integrals." Kyungpook Math. J. 42, 399-416, 2002.
Sloane, N. J. A. Sequences A093753 and A093754 in "The On-Line Encyclopedia of Integer Sequences."
Sondow, J. "Criteria for Irrationality of Euler's Constant." Proc. Amer. Math. Soc. 131, 3335-3344, 2003. http://arxiv.org/abs/math.NT/0209070.
Sondow, J. "Double Integrals for Euler's Constant and and an Analog of Hadjicostas's Formula." Amer. Math. Monthly 112, 61-65, 2005.
Zudilin, W. "An Apéry-Like Difference Equation for Catalan's Constant." Electronic J. Combinatorics 10, No. 1, R14, 1-10, 2003. http://www.combinatorics.org/Volume_10/Abstracts/v10i1r14.html.