1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Catalan,s Constant

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

18-8-2018

2298

Catalan's Constant

 

Catalan's constant is a constant that commonly appears in estimates of combinatorial functions and in certain classes of sums and definite integrals. It is usually denoted K (this work), G (e.g., Borwein et al. 2004, p. 49), or C (Wolfram Language).

Catalan's constant may be defined by

(1)

(Glaisher 1877, who however did not explicitly identify the constant in this paper). It is not known if K is irrational.

Catalan's constant is implemented in the Wolfram Language as Catalan.

The constant is named in honor of E. C. Catalan (1814-1894), who first gave an equivalent series and expressions in terms of integrals. Numerically,

 K=0.915965594177...

(2)

(OEIS A006752).

K can be given analytically by the following expressions

K = beta(2)

(3)

= -ichi_2(i)

(4)

=

(5)

where beta(z) is the Dirichlet beta function, chi_nu(z) is Legendre's chi-function, A is the Glaisher-Kinkelin constant, and  is the partial derivative of the Hurwitz zeta function with respect to the first argument.

Glaisher (1913) gave

(6)

(Vardi 1991, p. 159). It is also given by the sums

K =

(7)

=

(8)

=

(9)

Equations (◇) and (◇) follow from

(10)

together with

=

(11)

=

(12)

=

(13)

=

(14)

But

=

(15)

=

(16)

so combining (16) with (◇) gives (◇) and (◇).

Applying convergence improvement to (◇) gives

(17)

where zeta(z) is the Riemann zeta function and the identity

 1/((1-3z)^2)-1/((1-z)^2)=sum_(m=1)^infty(m+1)(3^m-1)/(4^m)z^m

(18)

has been used (Flajolet and Vardi 1996).

A beautiful double series due to O. Oloa (pers. comm., Dec. 30, 2005) is given by

(19)

There are a large number of BBP-type formulas with coefficient (-1)^k, the first few being

K =

(20)

= 4sum_(k=0)^(infty)((-1)^k)/((4k+2)^2)

(21)

= sum_(k=0)^(infty)(-1)^k[1/((6k+1)^2)-1/((6k+3)^2)+1/((6k+5)^2)]

(22)

=

(23)

=

(24)

=

(25)

=

(26)

=

(27)

(E. W. Weisstein, Feb. 26, 2006).

BBP-type formula identities for K with higher powers include

K =

(28)

(V. Adamchik, pers. comm., Sep. 28, 2007),

K =

(29)

(E. W. Weisstein, Sep. 30, 2007),

K =

(30)

(Borwein and Bailey 2003, p. 128), and

K =

(31)

=

(32)

(E. W. Weisstein, Feb. 25, 2006).

A rapidly converging Zeilberger-type sum due to A. Lupas is given by

(33)

(Lupas 2000), and is used to calculate K in the Wolfram Language.

Catalan's constant is also given by the integrals

K = int_0^1(tan^(-1)xdx)/x

(34)

= int_0^13/xtan^(-1)[(x(1-x))/(2-x)]dx

(35)

= -int_0^1(lnxdx)/(1+x^2)

(36)

= 1/2int_0^1K(k)dk

(37)

= -int_0^(pi/2)ln[2sin(1/2t)]dt

(38)

= int_0^(pi/4)ln(cotx)dx

(39)

= 1/2int_0^(pi/2)xcscxdx

(40)

= pi/8int_(-infty)^infty(sechttanht)/tdt

(41)

= int_0^(pi/2)sinh^(-1)(sinx)dx

(42)

=

(43)

where (37) is from Mc Laughlin (2007; which corresponds to the 1/(-64)^k BBP-type formula), (38) is from Borwein et al. (2004, p. 106), (40) is from Glaisher (1877), (41) is from J. Borwein (pers. comm., Jul. 16, 2007), (42) is from Adamchik, and (43) is from W. Gosper (pers. comm., Jun. 11, 2008). Here, K(k) (not to be confused with Catalan's constant itself) is a complete elliptic integral of the first kind. Zudilin (2003) gives the unit square integral

 K=1/8int_0^1int_0^1(dxdy)/((1-xy)sqrt(x(1-y))),

(44)

which is the analog of a double integral for zeta(2) due to Beukers (1979).

In terms of the trigamma function psi_1(x),

K = 1/(16)psi_1(1/4)-1/(16)psi_1(3/4)

(45)

= 1/8pi^2-1/8psi_1(3/4)

(46)

= 1/(32)psi_1(1/8)+1/(32)psi_1(5/8)-1/8pi^2

(47)

= 1/8pi^2-1/(32)psi_1(3/8)-1/(32)psi_1(7/8)

(48)

= 1/(64)[psi_1(1/8)-psi_1(3/8)+psi_1(5/8)-psi_1(7/8)]

(49)

= 1/(80)psi_1(5/(12))+1/(80)psi_1(1/(12))-1/(10)pi^2

(50)

= 1/(10)pi^2-1/(80)psi_1(7/(12))-1/(80)psi_1((11)/(12))

(51)

= 1/(160)[psi_1(1/(12))+psi_1(5/(12))-psi_1(7/(12))-psi_1((11)/(12))].

(52)

Catalan's constant also arises in products, such as

(53)

(Glaisher 1877).

Zudilin (2003) gives the continued fraction

(54)

where

p(n) = 20n^2-8n+1

(55)

q(n) =

(56)

which is an analog of the continued fraction of Apéry's constant found by Apéry (1979).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 807-808, 1972.

Adamchik, V. "Integral and Series Representations for Catalan's Constant." http://www-2.cs.cmu.edu/~adamchik/articles/catalan.htm.

 Adamchik, V. "Thirty-Three Representations of Catalan's Constant." http://library.wolfram.com/infocenter/Demos/109/.

Apéry, R. "Irrationalité de zeta(2) et zeta(3)." Astérisque 61, 11-13, 1979.

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 551-552, 1985.

Beukers, F. "A Note on the Irrationality of zeta(2) and zeta(3)." Bull. London Math. Soc. 11, 268-272, 1979.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Catalan, E. "Sur la transformation des series, et sur quelques integrales definies." Mémoires in 4 de l'Academie royale de Belgique, 1865.

Catalan, E. "Recherches sur la constant G, et sur les integrales euleriennes." Mémoires de l'Academie imperiale des sciences de Saint-Pétersbourg, Ser. 7, 31, 1883.

Fee, G. J. "Computation of Catalan's Constant using Ramanujan's Formula." ISAAC '90. Proc. Internat. Symp. Symbolic Algebraic Comp., Aug. 1990. Reading, MA: Addison-Wesley, 1990.

Finch, S. R. "Catalan's Constant." §1.7 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 53-59, 2003.

Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.

Glaisher, J. W. L. "On a Numerical Continued Product." Messenger Math. 6, 71-76, 1877.

Gosper, R. W. "A Calculus of Series Rearrangements." In Algorithms and Complexity: New Directions and Recent Results. Proc. 1976 Carnegie-Mellon Conference (Ed. J. F. Traub). New York: Academic Press, pp. 121-151, 1976.

Gosper, R. W. "Thought for Today." math-fun@cs.arizona.edu posting, Aug. 8, 1996.

Lupas, A. "Formulae for Some Classical Constants." In Proceedings of ROGER-2000. 2000. http://www.lacim.uqam.ca/~plouffe/articles/alupas1.pdf.

Mc Laughlin, J. "An Integral for Catalan's Constant." 27 Sep 2007. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0709&L=nmbrthry&T=0&P=3444.

Nielsen, N. Der Eulersche Dilogarithms. Leipzig, Germany: Halle, pp. 105 and 151, 1909.

Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.

Rivoal, T. and Zudilin, W. "Diophantine Properties of Numbers Related to Catalan's Constant." Math. Ann. 326, 705-721, 2003. http://www.mi.uni-koeln.de/~wzudilin/beta.pdf.

Sloane, N. J. A. Sequence A006752/M4593 in "The On-Line Encyclopedia of Integer Sequences."

Srivastava, H. M. and Miller, E. A. "A Simple Reducible Case of Double Hypergeometric Series involving Catalan's Constant and Riemann's Zeta Function." Int. J. Math. Educ. Sci. Technol. 21, 375-377, 1990.

Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.

Yang, S. "Some Properties of Catalan's Constant G." Int. J. Math. Educ. Sci. Technol. 23, 549-556, 1992.

Zudilin, W. "An Apéry-Like Difference Equation for Catalan's Constant." Electronic J. Combinatorics 10, No. 1, R14, 1-10, 2003. http://www.combinatorics.org/Volume_10/Abstracts/v10i1r14.html.

EN

تصفح الموقع بالشكل العمودي