1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Absolute Value

المؤلف:  Sloane, N. J. A

المصدر:  Sequences A000217/M2535, A116419, and A116420 in "The On-Line Encyclopedia of Integer Sequences."

الجزء والصفحة:  ...

13-8-2018

1461

Foundations of Mathematics

Absolute Value

 

AbsReal
 
 
             
  Min Max      

The absolute value of a real number x is denoted |x| and defined as the "unsigned" portion of x,

|x| = xsgn(x)

(1)

= {-x for x<=0; x for x>=0,

(2)

where sgn(x) is the sign function. The absolute value is therefore always greater than or equal to 0. The absolute value of xfor real x is plotted above.

AbsReImAbs
 
 
  Min   Max    
  Re    
  Im      

The absolute value of a complex number z=x+iy, also called the complex modulus, is defined as

 |z|=sqrt(x^2+y^2).

(3)

This form is implemented in the Wolfram Language as Abs[z] and is illustrated above for complex z.

Note that the derivative (read: complex derivative) d|z|/dz does not exist because at every point in the complex plane, the value of the derivative of |z| depends on the direction in which the derivative is taken (so the Cauchy-Riemann equationscannot and do not hold). However, the real derivative (i.e., restricting the derivative to directions along the real axis) can be defined for points other than x=0 as

 (d|x|)/(dx)={-1   for x<0; undefined   for x=0; 1   for x>0.

(4)

As a result of the fact that computer algebra languages such as the Wolfram Language generically deal with complex variables (i.e., the definition of derivative always means complex derivative), d|x|/dx correctly returns unevaluated by such software.

Note that the notation |z| is commonly used to denote the complex modulus, p-adic norm, or general valuation. In this work, the norm of a vector x is also denoted |x|, although the notation ||x|| is also in common use.

The notations for the floor function |_x_|, nearest integer function [x], and ceiling function [x] are similar to that used for the absolute value.

The unit square integral of the absolute value of the difference of two variables taken to the power n is given by

 int_0^1int_0^1|x-y|^ndxdy=2/((n+1)(n+2))

(5)

for R[n]>-1, which has values for n=0, 1, ... of 1, 1/3, 1/6, 1/10, 1/15, 1/21, ..., i.e., one over the triangular numbers(OEIS A000217), for n=1, 2, .... This sort of integral arises in the study of the Casimir effect (Milton and Ng 1998, eqn. 3.15; Milton 1999, p. 32, eqn. 3.33).

Similarly, for R[n]>-2,

 int_0^1int_0^1|x+y|^ndxdy=(2(2^(n+1)-1))/((n+1)(n+2)),

(6)

giving the first few values for n=0, 1, ... of 1, 1, 7/6, 3/2, 31, 15, 3, ... (OEIS A116419 and A116420).


REFERENCES:

Milton, K. A. "The Casimir Effect: Physical Manifestations of Zero-Point Energy." 4 Jan 1999. http://arxiv.org/abs/hep-th/9901011.

Milton, K. A. and Ng, J. "Observability of the Bulk Casimir Effect: Can the Dynamical Casimir Effect be Relevant to Sonoluminescence?" Phys. Rev. E 57, 5504-5510, 1998.

Sloane, N. J. A. Sequences A000217/M2535, A116419, and A116420 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي