تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fractional Integral
المؤلف:
Miller, K. S. and Ross, B
المصدر:
An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
الجزء والصفحة:
...
12-8-2018
1791
Fractional Integral
Denote the th derivative
and the
-fold integral
. Then
![]() |
(1) |
Now, if the equation
![]() |
(2) |
for the multiple integral is true for , then
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
Interchanging the order of integration gives
![]() |
(5) |
But (3) is true for , so it is also true for all
by induction. The fractional integral of
of order
can then be defined by
![]() |
(6) |
where is the gamma function.
More generally, the Riemann-Liouville operator of fractional integration is defined as
![]() |
(7) |
for with
(Oldham and Spanier 1974, Miller and Ross 1993, Srivastava and Saxena 2001, Saxena 2002).
The fractional integral of order 1/2 is called a semi-integral.
Few functions have a fractional integral expressible in terms of elementary functions. Exceptions include
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
where is a lower incomplete gamma function and
is the Et-function. From (10), the fractional integral of the constant function
is given by
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
A fractional derivative can also be similarly defined. The study of fractional derivatives and integrals is called fractional calculus.
REFERENCES:
Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.
Saxena, R. K.; Mathai, A. M.; and Haubold, H. J. "On Fractional Kinetic Equations." 23 Jun 2002. http://arxiv.org/abs/math.CA/0206240.
Srivastava, H. M. and Saxena, R. K. "Operators of Fractional Integration and Their Applications." Appl. Math. and Comput. 118, 1-52, 2001.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
