Read More
Date: 30-12-2019
994
Date: 13-10-2020
628
Date: 17-2-2020
757
|
The integer sequence 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, ... (OEIS A005044) given by the coefficients of the Maclaurin series for
(1) |
A binary plot of the first few terms in the sequence is illustrated above.
Closed forms include
(2) |
|||
(3) |
|||
(4) |
where is the floor function.
The number of different triangles which have integral sides and perimeter is given by
(5) |
|||
(6) |
|||
(7) |
where and are partition functions, with giving the number of ways of writing as a sum of terms, is the nearest integer function, and is the floor function (Jordan et al. 1979, Andrews 1979, Honsberger 1985). Strangely enough, for , 4, ... is precisely Alcuin's sequence.
REFERENCES:
Andrews, G. "A Note on Partitions and Triangles with Integer Sides." Amer. Math. Monthly 86, 477, 1979.
Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 39-47, 1985.
Jordan, J. H.; Walch, R.; and Wisner, R. J. "Triangles with Integer Sides." Amer. Math. Monthly 86, 686-689, 1979.
Sloane, N. J. A. Sequence A005044/M0146 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|