x

هدف البحث

بحث في العناوين

بحث في المحتوى

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

Biconjugate Gradient Method

المؤلف:  Faber, V. and Manteuffel, T.

المصدر:  "Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method." SIAM J. Numer. Anal. 21

الجزء والصفحة:  ...

30-11-2021

1039

Biconjugate Gradient Method

The conjugate gradient method is not suitable for nonsymmetric systems because the residual vectors cannot be made orthogonal with short recurrences, as proved in Voevodin (1983) and Faber and Manteuffel (1984). The generalized minimal residual method retains orthogonality of the residuals by using long recurrences, at the cost of a larger storage demand. The biconjugate gradient method (BCG) takes another approach, replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at the price of no longer providing a minimization.

The update relations for residuals in the conjugate gradient method are augmented in the biconjugate gradient method by relations that are similar but based on A^(T) instead of A. Thus we update two sequences of residuals

r^((i)) = r^((i-1))-alpha_iAp^((i))

(1)

r^~^((i)) = r^~^((i-1))-alpha_iA^(T)p^~^((i))

(2)

and two sequences of search directions

p^((i)) = r^((i-1))+beta_(i-1)p^((i-1))

(3)

p^~^((i)) = r^~^((i-1))+beta_(i-1)p^~^((i-1)).

(4)

The choices

alpha_i = (r^~^((i-1)^(T))r^((i-1)))/(p^~^((i)^(T))Ap^((i)))

(5)

beta_i = (r^~^((i)^(T))r^((i)))/(r^~^((i-1)^(T))r^((i-1)))

(6)

ensure the orthogonality relations

 r^~^((i)^(T))r^((j))=p^~^((i)^(T))Ap^((j))=0

(7)

if i!=j.

Few theoretical results are known about the convergence of the biconjugate gradient method. For symmetric positive definite systems, the method delivers the same results as the conjugate gradient method, but at twice the cost per iteration. For nonsymmetric matrices, it has been shown that in phases of the process where there is significant reduction of the norm of the residual, the method is more or less comparable to the full generalized minimal residual method in terms of numbers of iterations (Freund and Nachtigal 1991). In practice, this is often confirmed, but it is also observed that the convergence behavior may be quite irregular, and the method may even break down. The breakdown situation due to the possible event that

 z^((i-1)^(T))r^~^((i-1)) approx 0

(8)

can be circumvented by so-called look-ahead strategies (Parlett et al. 1985). The other breakdown situation,

 p^~^((i)^(T))q^((i)) approx 0

(9)

occurs when the LU decomposition fails (c.f. conjugate gradient method), and can be repaired by using another decomposition. This is done for example in some versions of the quasi-minimal residual method.

Sometimes, breakdown or near breakdown situations can be satisfactorily avoided by a restart at the iteration step immediately before the (near) breakdown step. Another possibility is to switch to a more robust (but possibly more expensive) method such as the generalized minimal residual method.

BCG requires computing a matrix-vector product Ap^((k)) and a transpose product A^(T)p^~^((k)). In some applications, the latter product may be impossible to perform, for instance if the matrix is not formed explicitly and the regular product is only given in operation form, for instance as a function call evaluation.

In a parallel environment, the two matrix-vector products can theoretically be performed simultaneously; however, in a distributed-memory environment, there will be extra communication costs associated with one of the two matrix-vector products, depending upon the storage scheme for A. A duplicate copy of the matrix will alleviate this problem, at the cost of doubling the storage requirements for the matrix.

Care must also be exercised in choosing the preconditioner, since similar problems arise during the two solves involving the preconditioning matrix.

It is difficult to make a fair comparison between the generalized minimal residual method (GMRES) and BCG. GMRES really minimizes a residual, but at the cost of increasing work for keeping all residuals orthogonal and increasing demands for memory space. BCG does not minimize a residual, but often its accuracy is comparable to GMRES, at the cost of twice the amount of matrix vector products per iteration step. However, the generation of the basis vectors is relatively cheap and the memory requirements are modest. Several variants of BCG have been proposed (e.g., conjugate gradient squared method and biconjugate gradient stabilized method) that increase the effectiveness of this class of methods in certain circumstances.


REFERENCES:

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

Faber, V. and Manteuffel, T. "Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method." SIAM J. Numer. Anal. 21, 315-339, 1984.

Freund, R. and Nachtigal, N. "QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems." Numer. Math. 60, 315-339, 1991.

Parlett, B. N. Taylor, D. R.; and Liu, Z. A. "A Look-Ahead Lanczos Algorithm for Unsymmetric Matrices." Math. Comput. 44, 105-124, 1985.

Voevodin, V. "The Problem of Non-Self-Adjoint Generalization of the Conjugate Gradient Method is Closed." U.S.S.R. Comput. Maths. and Math. Phys. 23, 143-144, 1983.

 شعار المرجع الالكتروني للمعلوماتية




البريد الألكتروني :
info@almerja.com
الدعم الفني :
9647733339172+