Solvent Effects on the SN1 Reaction
المؤلف:
..................
المصدر:
LibreTexts Project
الجزء والصفحة:
.................
1-8-2019
1350
Solvent Effects on the SN1 Reaction
Since the hydrogen atom in a polar protic solvent is highly positively charged, it can interact with the anionic nucleophile which would negatively affect an SN2, but it does not affect an SN1 reaction because the nucleophile is not a part of the rate-determining step. Polar protic solvents actually speed up the rate of the unimolecular substitution reaction because the large dipole moment of the solvent helps to stabilize the transition state. The highly positive and highly negative parts interact with the substrate to lower the energy of the transition state. Since the carbocation is unstable, anything that can stabilize this even a little will speed up the reaction.
Sometimes in an SN1 reaction the solvent acts as the nucleophile. This is called a solvolysis reaction (see example below). The polarity and the ability of the solvent to stabilize the intermediate carbocation is very important as shown by the relative rate data for the solvolysis (see table below). The dielectric constant of a solvent roughly provides a measure of the solvent's polarity. A dielectric constant below 15 is usually considered non-polar. Basically, the dielectric constant can be thought of as the solvent's ability to reduce the internal charge of the solvent. So for our purposes, the higher the dielectric constant the more polar the substance and in the case of SN1 reactions, the faster the rate.
Below is the same reaction conducted in two different solvents and the relative rate that corresponds with it.
The figure below shows the mechanism of an SN1 reaction of an alkyl halide with water. Since water is also the solvent, this is an example of a solvolysis reaction.
Examples of polar protic solvents are: acetic acid, isopropanol, ethanol, methanol, formic acid, water, etc.
الاكثر قراءة في تجارب وتفاعلات في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة